7th October 2024

How to quickly cool a glass? The Mpemba effect in rugged landscapes

Laboratory of Interdisciplinary Physics National Biodiversity Future Center University of Padova **Italy**

Francesco Ferraro

Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse

- Z. Lu and O. Raz *Proceedings of the National Academy of Sciences 114.20 (2017): 5083-5088*
- M. Baity-Jesi et al. **The Mpemba effect in spin glasses is a persistent memory effect**

Proceedings of the National Academy of Sciences 116.31 (2019): 15350-15355

The Mpemba effect in water

[J. H. Thomas, Wooster Open Works (2007)]

The quasi-static origin of the paradox

distribution space

Non-equilibrium shortcuts

• Markov property implies master equation

 $= \sum R_{ij}(T_b) p_j(t)$ *j*

 $> \lambda_1 > ... > \lambda_n$

 $v_0 = p_{eq}, v_1, \ldots, v_n$

and (right) eigenvectors

Non-equilibrium Markovian dynamics

$$
\frac{dp_i(t)}{dt} =
$$

• Assuming ergodicity + detailed balance: $R_{ij}(T_b)$ is diagonalizable with real eigenvalues

$$
\lambda_0 = 0 >
$$

- Starting conditions: $p^h(0)$ and $p^c(0)$
- After quench, relaxation to equilibrium is identical at long times

The Markovian Mpemba effect

$$
p^{h}(t) = p_{eq} + a_1^h e^{\lambda_1 t} v_1 + \dots
$$

$$
p^{c}(t) = p_{eq} + a_1^c e^{\lambda_1 t} v_1 + \dots
$$

- If $a_1^c > a_1^h$ then the cold system lags behind the hot one: Mpemba effect!
- If $a_1 = 0$, relaxation is "exponentially" faster: "strong" Mpemba effect

Example: three-state system

periodic poundary

 \blacktriangleright θ

Example: three-state system

The first experiment: a colloid in a double-well

[Kumar and Bechhoefer, Nature 2020]

Mpemba effect and rugged landscapes

- In 3D, spin-glass transition at $T_c = 1.102(3)$
- Simulation details
	- $-3D$ with $L = 160$
	- 16 samples of $\{J\}$, 256 replicas each
	- Metropolis algorithm, 1 lattice sweep \approx 1 ps
	- simulation time from 1 ps to 0.1 s (!!)

$s_i s_j$ $J_{ij} = \pm 1$

A simple spin-glass

$$
H = -\sum_{\langle i,j \rangle} J_{ij} s
$$

A realization at $T < T_c$

 $\left\{ \overline{q}_{\boldsymbol{x}}^{(a,b)}=s_{\boldsymbol{x}}^{(a)}\cdot s_{\boldsymbol{x}}^{(b)}\right\}$

Relaxation after a quench below *Tc*

Relaxation after a quench below *Tc*

Coherence length

 $\int_{\mathbf{R}}s_{\bm{x}}^{(a)}% \frac{1}{2\pi\hbar^{2}}\left(\frac{g_{\bm{x}}^{(a)}(s_{\bm{x}}^{(a)}% ,\bar{c}_{\bm{x}}^{(b)}(s_{\bm{x}}^{(b)}))\right) \frac{d\bar{c}}{s_{\bm{x}}^{(a)}}\left(s_{\bm{x}}^{(a)}\right) \frac{d\bar{c}}{s_{\bm{x}}^{(b)}}\left(s_{\bm{x}}^{(b)}\right) \frac{d\bar{c}}{s_{\bm{x}}^{(b)}}\left(s_{\bm{x}}^{(b)}\right) \frac{d\bar{c}}{s_{\bm{x}}^{(b)}}\$ $\left\{q_{\boldsymbol{x}}^{(a,b)}-s_{\boldsymbol{x}}^{(a)}\cdot s_{\boldsymbol{x}}^{(b)}\right\}$ $\left[s_{\bm{x}}^{(b)}\right]$

- Above T_c grows (slowly) to equilibrium value
- Below T_c grows without bounds (slowly) as *ξ* ∼ *t* $1/z(T)$

How to quickly cool a glass?

$E(t) = E_{\infty}(T) +$ E_1 *ξ*(*t*)*Dl* + …

$D_l \approx 2.5$

lower critical dimension

What about ecological communities?

PHYSICAL REVIEW LETTERS 126, 258301 (2021)

Editors' Suggestion

$$
\frac{dN_i}{dt} = N_i \left[1 - N_i - \sum_{j, (j \neq i)} \alpha_{ij} N_j \right] + \eta_i(t)
$$

 $\langle \eta_i(t)\eta_j(t')\rangle = 2TN_i(t)\delta_{ij}\delta(t-t')$

Properties of Equilibria and Glassy Phases of the Random Lotka-Volterra **Model with Demographic Noise**

