Generating functional approach to dynamical systems with colored-noise interactions

Francesco Ferraro

Laboratory of Interdisciplinary Physics National Biodiversity Future Center University of Padova Italy

School of Mathematics - China University of Mining and Technology - 24 October 2024

References

- S. Suweis, F. Ferraro, C. Grilletta, S. Azaele, A. Maritan Interactions Physical Review Letters 133 (16), 167101
- F. Ferraro^{*}, C. Grilletta^{*}, A. Maritan, S. Suweis, S. Azaele annealed disorder arXiv:2405.05183

Generalized Lotka-Volterra Systems with Time Correlated Stochastic

Exact solution of Dynamical Mean-Field Theory for a linear system with

Non-linear model for dynamics of ecological community

$$\dot{x}_i = x_i \left(1 \right)$$

- x_i : number of individuals of species i = 1, ..., N
- With N species, $\sim N^2$ interaction parameters
- Popular approach: disordered interactions

$$\dot{x}_i = x_i \left(1 - x_i - \sum_{j \neq i} \alpha_{ij} x_j \right)$$

$$mean(\alpha_{ij}) = \mu/N$$
$$var(\alpha_{ij}) = \sigma^2/N$$

[Bunin, PRE 2017]

- Predicted equilibrium distribution is Gaussian
- But not observed experimentally! Instead power-law, gamma, log-normal, ...
- Lotka-Volterra equations are reasonable.
 Discrepancy might lie in assumptions on interactions:
 - random
 - two-body
 - Gaussian
 - fixed in time ("quenched")
 - instantaneous

- Predicted equilibrium distribution is Gaussian
- But not observed experimentally! Instead power-law, gamma, log-normal, ...
- Lotka-Volterra equations are reasonable. Discrepancy might lie in assumptions on interactions:
 - random
 - two-body
 - Gaussian
 - fixed in time ("quenched")
 - instantaneous

"Annealed" interactions

Interactions as Ornstein-Uhlenbeck processes

$$\alpha_{ij}(t) = \frac{\mu}{N} + \frac{\sigma}{\sqrt{N}} z_{ij}(t)$$

- Correlation time: τ
- Amplitude is chosen to have limits
 - $\tau \rightarrow \infty$: quenched disorder

- $\tau \rightarrow 0$: white noise

 $\langle z_{ij}(t) \rangle = 0$ $\langle z_{ij}(t)z_{ij}(t')\rangle = Q(t-t')$

 $Q(\Delta t) = \frac{1 + 2\tau}{2} \exp(-|\Delta t|/\tau)$ 2τ

Annealed disorder fits data better!

Linear system with annealed disorder

$$\dot{x}_i(t) = h - kx$$

 $x_i(t) + \sum \alpha_{ij}(t) x_j(t)$ j≠i

Dynamical Mean-Field Theory

$$\dot{x}_i(t) = h - kt$$

- Idea:
 - all degrees of freedom are statistically equivalent
 - write a closed equation for a representative one
 - interaction term is random, Gaussian by CLT, time-dependent \Rightarrow Gaussian process

 $\alpha_{ij}(t) + \sum \alpha_{ij}(t) x_j(t)$ i≠i

Generating functional

$$Z[\psi] = \int D[x] \delta(x - x^*) e^{i\psi \cdot x}$$
$$D[x] = \prod_{i,t} dx_i(t) \qquad \delta(x - x^*) = \prod_{i,t} \delta(x_i(t) - x_i^*(t)) \qquad \psi \cdot x = \sum_i \int dt \psi_i(t) x_i(t)$$

- $x_i^*(t)$ are solutions of linear system for a given realization of $\alpha_{ii}(t)$
- If $Z[\psi]$ is known, all information about $x_i^*(t)$ can be obtained taking derivatives w.r.t to ψ_i

Generating functional

$$Z[\psi] = \int D$$

- Take average over disorder $\alpha_{ii}(t)$
- Result is $\langle Z[\psi] \rangle = Z_{eff}^N[\psi]$ with Z_{eff} generating functional of $\dot{x}(t) = h$ -

where $\eta(t)$ is Gaussian noise with

- $\langle \eta(t) \rangle = \mu \langle x(t) \rangle$

$\mathcal{V}[x]\delta(x-x^*)e^{i\psi\cdot x}$

$$-kx(t) + \eta(t)$$

 $\langle \eta(t)\eta(t')\rangle_c = \sigma^2 Q(t-t')\langle x(t)x(t')\rangle$

Dynamical Mean-Field Theory

$$\dot{x}_i(t) = h - kx$$

$$\dot{x}(t) = h$$

- DMFT equation is same as Ornstein-Uhlenbeck SDE
- ...but noise is self-consistent! Much more complicated

 $x_i(t) + \sum \alpha_{ij}(t) x_j(t)$ j≠i $-kx(t) + \eta(t)$

DMFT process is Gaussian

 $\dot{x}(t) = h -$

• Explicit solution is

$$x(t) = x_0 e^{-kt} + \int_0^t ds e^{-k(t-s)} \left(h + \eta(t)\right)$$

- x(t) is Gaussian, since it is a linear combination of Gaussian $\eta(t)$
- So we only need to find mean $\langle x(t) \rangle$ and autocorrelation $\langle x(t)x(t') \rangle$
- Mean is trivial. For autocorrelation...

$$-kx(t) + \eta(t)$$

Autocorrelation: PDE

- Rewrite DMFT equation as $\eta(t) = \dot{x}(t)$
- Take the product $\eta(t)\eta(t')$ and average
- Result is a PDE for the autocorrelation

$$\left[\partial_t \partial_{t'} + k(\partial_t + \partial_{t'}) + k^2 - \sigma^2 Q(t - t')\right] C(t, t') = f(t, t')$$

where

$$f(t,t') = \sigma^2 Q(t-t') \langle x(t) \rangle \langle x(t') \rangle$$

$$(t) + kx(t) - h$$

ion
$$C(t, t') = \langle x(t)x(t') \rangle - \langle x(t) \rangle \langle x(t') \rangle$$

Autocorrelation: Riemann method

$$\left[\partial_t \partial_{t'} + k(\partial_t + \partial_{t'}) + k^2 - \sigma^2 Q(t - t')\right] C(t, t') = f(t, t')$$

- With the transformation $C(t, t') = e^{-k(t+t')}D(t, t')$ this is equivalent to
- Linear hyperbolic PDE: Riemann method Find Riemann function A(s, s'; t, t') which solves

$$\begin{cases} \left[\partial_s \partial_{s'} - \sigma^2 Q(s) \\ A(s, t'; t, t') = 1 \\ A(t, s'; t, t') = 1 \end{cases} \end{cases}$$

 $\left|\partial_t \partial_{t'} - \sigma^2 Q(t-t')\right| D(t,t') = e^{k(t+t')} f(t,t'),$

$$[-s'] A(s, s'; t, t') = 0$$

Autocorrelation: Riemann function

- Make change of variables $u = e^{-s/\tau}$
- With some manipulations Riemann function is

$$A(s, s'; t, t') = \begin{cases} A_0(s, s'; t, t') & s - s' > 0\\ A_0(-s, -s'; -t, -t') & s - s' < 0 \end{cases}$$

with

 $A_0(s, s'; t, t') = J_0 \left(\lambda \sqrt{1 + 1} \right)$

$$\tau, u' = e^{s'/\tau}$$

$$\left(e^{-s/\tau}-e^{-t/\tau})(e^{s'/\tau}-e^{t'/\tau})\right)$$

Autocorrelation: exact solution

• Riemann method gives the autocorrelation as

$$C(t, t') = e^{-k(t+t')} \int_0^t ds \int_0^$$

- We were not able to compute the integral...
- $\int_{0}^{t'} ds' e^{k(s+s')} A(s, s'; t, t') f(s, s')$

Autocorrelation: numerics

Stationary autocorrelation

- At long times DMFT process becomes stationary
- Autocorrelation depends only on difference of times: $C(t, t') = C_{ct}(t t')$
- PDE becomes ODE

$$-C_{st}''(t) + \left[k^2 - \sigma^2 Q(t)\right] C_{st}(t) = \sigma^2 Q(t) \langle x \rangle_{st}^2,$$

which can be solved with standard methods

Stationary variance

• Since
$$C_{st}(t) = \langle x(t)x(0) \rangle - \langle x(t) \rangle \langle x(t) \rangle$$

It turns out that

$$\sigma_{st}^{2} = \left[\frac{{}_{1}F_{2}\left(n;n+1,2n+1;-\lambda^{2}/4\right)}{{}_{0}F_{1}\left(2n;-\lambda^{2}/4\right)-{}_{0}F_{1}\left(2n+1;-\lambda^{2}/4\right)}-1\right]\langle x\rangle_{st}^{2},$$

with

$$n = k\tau$$
 $\lambda = \sqrt{2\tau(1+2\tau)}\sigma$

 $\langle x(0) \rangle$, stationary variance is $C_{st}(0)$

Stationary variance

Stationary variance

non-monotonic in general!

Phase diagram

Variance diverges

Stationary state is reached

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$n = k\tau$$
 $\lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c$

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$n = k\tau$$
 $\lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c$

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$n = k\tau$$
 $\lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c$

Conclusions

- We studied a multidimensional linear system with colored-noise interactions
- Using the generating functional we derived equation for a representative d.o.f.
- We showed that the solution is a Gaussian process
- We derived and solved equations for the mean and autocorrelation, solving exactly the system
- We found some unexpected features!
 - non-monotonic variance
 - re-entrant phase transition

Perspectives

- Possible extensions
 - hierarchical structure in interactions
 - finite connectivity
 - non-Gaussian interactions
- What happens with a combination of quenched and annealed disorder?
- stability of complex systems to time-dependent equilibria?

Can the framework of annealed disorder be used to extend May's result on

Acknowledgements

Sandro Azaele

Christian Grilletta

Amos Maritan

Samir Suweis

Thank you for your attention!

Francesco Ferraro

Laboratory of Interdisciplinary Physics National Biodiversity Future Center University of Padova Italy

School of Mathematics - China University of Mining and Technology - 24 October 2024