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Background: Lotka-Volterra equations

* Non-linear model for dynamics of ecological community

» X; : number of individuals of speciesi = 1,..., N

. With N species, ~ N interaction parameters

 Popular approach: disordered interactions



Background: Lotka-Volterra equations
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Background: Lotka-Volterra equations

* Predicted equilibrium distribution is Gaussian 2

 But not observed experimentally!

Instead power-law, gamma, log-normal, ... .

* | otka-Volterra equations are reasonable.
Discrepancy might lie in assumptions on interactions:
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[Galla, EPL 2018]



Background: Lotka-Volterra equations

extinct
species

surviving species

- fixed in time (“guenched”) 0 0.5 I L5 2 2.5
abundance

[Galla, EPL 2018]



“Annealed” interactions

* |nteractions as Ornstein-Uhlenbeck processes

00 =L+ g0 a0
NN (D2 () = Ot — 1)
e Correlation time: 7
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Annealed disorder fits data better!
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Linear system with annealed disorder

50 = h—kx(t) + ) o (£)x0)
J#1




Dynamical Mean-Field Theory

) = h —kx(t+ ) o, (0x5(0)
el
e |dea:
- all degrees of freedom are statistically equivalent

- write a closed equation for a representative one

- Interaction term is random, Gaussian by CLIT, time-dependent
= (Gaussian process



Generating functional

Zly] = JD[X]é(X — x*¥)eWX

D[x] = dei(t) S(x — x*) = Hé(xl-(t) —x¥(1)  wex= Z Jdt%(t)xi(t)

l

. xl.*(t) are solutions of linear system for a given realization of (xlj(t)

» If Z[y] is known, all information about x>*(#) can be obtained taking
derivatives w.r.t to y;



Generating functional

Zly] = JD[X]é(x — x*¥)eWX

. Take average over disorder al-j(t)

. Resultis (Z[y]) = ngf[l//] with Zeff generating functional of
x(1) = h — kx(t) + n(r)

where 1(7) is Gaussian noise with
(@) = pux(@))
(n(On(t"), = 670t — ) {x(Ox(1"))



Dynamical Mean-Field Theory

50 = h—kx(t) + ) o (0)x0)
J#1

\ ¢

%(t) = h — kx(t) + n(t)

« DMFT equation is same as Ornstein-Uhlenbeck SDE

e ...but noise is self-consistent! Much more complicated



DMFT process is Gaussian

(1) = h — kx(t) + n(t)

* EXxplicit solution is
t

x(1) = xoe_kt + J dse ~K1=5) (h + r](t))
0

 x(?) is Gaussian, since it is a linear combination of Gaussian 7(¢)

» So we only need to find mean {x(#)) and autocorrelation {x(#)x(z"))

e Mean is trivial. For autocorrelation...



Autocorrelation: PDE

 Rewrite DMFT equation as
n(t) = x(t) + kx(t) — h
» Take the product #(#)n(t’) and average
» Result is a PDE for the autocorrelation C(¢,t") = (x(?)x(t")) — (x(?)){x(?'))
0,0, + k(0,+ 9,) + k* — 67Q(t — 1')| C(t,1) = f(2, 1)

where

f(t, 1) = 6°Q(t — t){x(0) }{x(1))



Autocorrelation: Riemann method

0,0, +k(0,+ 9,) + k* — 67Q(t — 1')| C(t,1) = f(2,1)

+ With the transformation C (7, ) = €_k(t+tl)D(t, t') this is equivalent to
00, 0 -] DGO = )

* Linear hyperbolic PDE: Riemann method
Find Riemann function A(s, s'; £, ') which solves

0,0, — 6°Q(s — s")| A(s, s';2,1) = 0
A(s,tt,t) =1
A(t, st t) =1



Autocorrelation: Riemann function

 Make change of variables 1 = e‘S/T, u' = e’s’"

* With some manipulations Riemann function is

Ao(s, s 1, 1) s—s >0
Ag(—=s,— s —t,— 1) s—s5 <0

AO(S, S/; . t/) _ JO (/1 /(e—S/T - e—t/f)(es’/f . et’/f))

A(s, st 1) = {

with



Autocorrelation: exact solution

 Riemann method gives the autocorrelation as

[ t
C(t,t) = e_k(”t’)J ds[ ds'e"5tIA(s, 5" 1, 1) f(s, )
0o Jo

 We were not able to compute the integral...



Autocorrelation: numerics
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Stationary autocorrelation

* At long times DMFT process becomes stationary

» Autocorrelation depends only on difference of times: C(z,t") = C (¢t — t')

 PDE becomes ODE
—Cl(1) + |k* — 6° Q)| C,\(1) = 6°Q(1){x)2,

which can be solved with standard methods



Stationary variance

» Since C. (1) = (x(H)x(0)) — (x(2))(x(0)), stationary variance is C(0)

e |t turns out that

1y (n;n + 1,2n+ 1; — /12/4)
6= | ———————————— - 1| (x);,

with

n=Kkrt A=1/27(1 + 27)0



Stationary variance
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Stationary variance
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Phase diagram

Variance diverges

Stationary state
is reached




Critical variance
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Critical variance
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Critical variance
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re-entrant
phase transition!




Conclusions

 We studied a multidimensional linear system with colored-noise interactions
* Using the generating functional we derived equation for a representative d.o.f.
 We showed that the solution is a Gaussian process

 We derived and solved equations for the mean and autocorrelation, solving
exactly the system

 \We found some unexpected features!
- nhon-monotonic variance

- re-entrant phase transition



Perspectives

* Possible extensions
- hierarchical structure in interactions
- finite connectivity
- non-Gaussian interactions
 What happens with a combination of quenched and annealed disorder?

* Can the framework of annealed disorder be used to extend May’s result on
stability of complex systems to time-dependent equilibria?
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