School of Mathematics - China University of Mining and Technology - 24 October 2024

Laboratory of Interdisciplinary Physics National Biodiversity Future Center University of Padova **Italy**

Generating functional approach to dynamical systems with colored-noise interactions

Francesco Ferraro

Generalized Lotka-Volterra Systems with Time Correlated Stochastic

- S. Suweis, F. Ferraro, C. Grilletta, S. Azaele, A. Maritan **Interactions** *Physical Review Letters 133 (16), 167101*
- F. Ferraro*, C. Grilletta*, A. Maritan, S. Suweis, S. Azaele **annealed disorder** *arXiv:2405.05183*

Exact solution of Dynamical Mean-Field Theory for a linear system with

References

• Non-linear model for dynamics of ecological community

- x_i : number of individuals of species $i = 1,...,N$
- With N species, $\sim N^2$ interaction parameters
- Popular approach: disordered interactions

Background: Lotka-Volterra equations

$$
\dot{x}_i = x_i \left(1 - x_i - \sum_{j \neq i} \right)
$$

j≠*i αij xj*

Background: Lotka-Volterra equations

$$
\dot{x}_i = x_i \left(1 - x_i - \sum_{j \neq i} \alpha_{ij} x_j \right)
$$

 $mean(\alpha_{ij}) = \mu/N$ $\textsf{var}(\alpha_{ij}) = \sigma^2/N$

[Bunin, PRE 2017]

Background: Lotka-Volterra equations

- Predicted equilibrium distribution is Gaussian
- But not observed experimentally! Instead power-law, gamma, log-normal, …
- Lotka-Volterra equations are reasonable. Discrepancy might lie in assumptions on interactions:
	- random
	- two-body
	- Gaussian
	- fixed in time ("quenched")
	- instantaneous

Background: Lotka-Volterra equations

- Predicted equilibrium distribution is Gaussian
- But not observed experimentally! Instead power-law, gamma, log-normal, …
- Lotka-Volterra equations are reasonable. Discrepancy might lie in assumptions on interactions:
	- random
	- two-body
	- Gaussian
	- fixed in time ("quenched")
	- instantaneous

• Interactions as Ornstein-Uhlenbeck processes

- Correlation time: *τ*
- Amplitude is chosen to have limits
	- : quenched disorder *τ* → ∞

 $- \tau \rightarrow 0$: white noise

(*t*) $\langle z_{ij}(t) \rangle = 0$ $\langle z_{ij}(t)z_{ij}(t')\rangle = Q(t-t')$

 $Q(\Delta t) =$ $1 + 2\tau$ 2*τ* $\exp(-|\Delta t|/\tau)$

"Annealed" interactions

$$
\alpha_{ij}(t) = \frac{\mu}{N} + \frac{\sigma}{\sqrt{N}} z_{ij}(t)
$$

Annealed disorder fits data better!

 $\dot{\hat{X}}$ $\dot{x}_i = x_i \mid 1 - x_i - \sum_i$ *j*≠*i αij* (*t*)*xj*

Linear system with annealed disorder

 $\alpha_{ij}(t) = h - kx_i(t) + \sum_{j} \alpha_{ij}(t)x_j(t)$ *j*≠*i*

$$
\dot{x}_i(t) = h - kx
$$

 $\left(t \right) = h - kx_i(t) + \sum_{j} \alpha_{ij}(t)x_j(t)$ *j*≠*i*

Dynamical Mean-Field Theory

$$
\dot{x}_i(t) = h - k.
$$

- Idea:
	- all degrees of freedom are statistically equivalent
	- write a closed equation for a representative one
	- interaction term is random, Gaussian by CLT, time-dependent \Rightarrow Gaussian process

- $x_i^*(t)$ are solutions of linear system for a given realization of $\alpha_{ij}(t)$
- If $Z[\psi]$ is known, all information about $x_i^*(t)$ can be obtained taking derivatives w.r.t to *ψi*

Generating functional

$$
Z[\psi] = \int D[x] \delta(x - x^*) e^{i\psi \cdot x}
$$

$$
D[x] = \prod_{i,t} dx_i(t) \qquad \delta(x - x^*) = \prod_{i,t} \delta(x_i(t) - x_i^*(t)) \qquad \psi \cdot x = \sum_i \int dt \psi_i(t) x_i(t)
$$

Generating functional

$$
Z[\psi] = \int D
$$

- Take average over disorder $\alpha_{ij}(t)$
- Result is $\langle Z[\psi]\rangle = Z_{eff}^N[\psi]$ with Z_{eff} generating functional of $Z_{eff}^{\prime\prime}[\psi]$ with $Z_{eff}^{\prime\prime}$ $\dot{\hat{\chi}}$

where $\eta(t)$ is Gaussian noise with

- $\langle \eta(t) \rangle = \mu \langle x(t) \rangle$
- $\langle \eta(t) \eta(t') \rangle_c$

$\partial [x]\delta(x - x^*)e^{i\psi \cdot x}$

$$
\dot{x}(t) = h - kx(t) + \eta(t)
$$

 $= \sigma^2 Q(t-t') \langle x(t)x(t') \rangle$

- DMFT equation is same as Ornstein-Uhlenbeck SDE
- …but noise is self-consistent! Much more complicated

 $\alpha_{ij}(t) = h - kx_i(t) + \sum_{j} \alpha_{ij}(t)x_j(t)$ *j*≠*i* $- kx(t) + \eta(t)$

Dynamical Mean-Field Theory

$$
\dot{x}_i(t) = h - kx
$$

$$
\dot{x}(t)=h
$$

• Explicit solution is

DMFT process is Gaussian

 $\dot{\tilde{\chi}}$

$$
\dot{x}(t) = h - kx(t) + \eta(t)
$$

$$
x(t) = x_0 e^{-kt} + \int_0^t ds e^{-k(t-s)} (h + \eta(t))
$$

- $x(t)$ is Gaussian, since it is a linear combination of Gaussian $\eta(t)$
- So we only need to find mean $\langle x(t) \rangle$ and autocorrelation $\langle x(t)x(t') \rangle$
- Mean is trivial. For autocorrelation...

where

$$
\text{ion } C(t, t') = \langle x(t)x(t') \rangle - \langle x(t) \rangle \langle x(t') \rangle
$$

Autocorrelation: PDE

- Rewrite DMFT equation as $\eta(t) =$ $\dot{\chi}$
- Take the product $\eta(t)\eta(t')$ and average
- Result is a PDE for the autocorrelation

$$
\dot{x}(t) + kx(t) - h
$$

$$
\left[\partial_t \partial_{t'} + k(\partial_t + \partial_{t'}) + k^2 - \sigma^2 Q(t - t')\right] C(t, t') = f(t, t')
$$

$$
f(t, t') = \sigma^2 Q(t - t') \langle x(t) \rangle \langle x(t') \rangle
$$

Autocorrelation: Riemann method

$$
\left[\partial_t \partial_{t'} + k(\partial_t + \partial_{t'}) + k^2 - \sigma^2 Q(t - t')\right] C(t, t') = f(t, t')
$$

- With the transformation $C(t, t') = e^{-k(t+t')}D(t, t')$ this is equivalent to
- Linear hyperbolic PDE: Riemann method Find Riemann function $A(s, s'; t, t')$ which solves

$$
Q(s - s') \big] A(s, s'; t, t') = 0
$$

$$
\begin{cases}\n\left[\partial_s \partial_{s'} - \sigma^2 Q(s - \sigma^2) - \sigma^2 Q(s - \sigma^2) - \sigma^2 \right] < \sigma, \ t, \ t' \end{cases}
$$
\n
$$
A(t, s'; t, t') = 1
$$

 $\left[\partial_t \partial_{t'} - \sigma^2 Q(t-t')\right] D(t,t') = e^{k(t+t')}f(t,t'),$

- Make change of variables $u = e^{-s/\tau}$, u'
- With some manipulations Riemann function is

with

 $A_0(s, s'; t, t') = J_0 \left(\lambda \sqrt{\frac{1}{t'} - t'} \right)$

$$
\tau, u' = e^{s'/\tau}
$$

Autocorrelation: Riemann function

$$
(e^{-s/\tau}-e^{-t/\tau})(e^{s/\tau}-e^{t/\tau})
$$

$$
A(s, s'; t, t') = \begin{cases} A_0(s, s'; t, t') & s - s' > 0 \\ A_0(-s, -s'; -t, -t') & s - s' < 0 \end{cases}
$$

• Riemann method gives the autocorrelation as

Autocorrelation: exact solution

- We were not able to compute the integral…
- *t*′ 0 *ds*′*ek*(*s*+*s*′) *A*(*s*,*s*′; *t*, *t*′) *f*(*s*,*s*′)

$$
C(t, t') = e^{-k(t+t')} \int_0^t ds \int_0^t
$$

Autocorrelation: numerics

- At long times DMFT process becomes stationary
- Autocorrelation depends only on difference of times: $C(t, t') = C_{st}(t t')$
- PDE becomes ODE

which can be solved with standard methods

Stationary autocorrelation

$$
-C''_{st}(t) + [k^2 - \sigma^2 Q(t)] C_{st}(t) = \sigma^2 Q(t) \langle x \rangle_{st}^2,
$$

- Since $C_{st}(t) = \langle x(t)x(0) \rangle \langle x(t) \rangle \langle x(0) \rangle$, stationary variance is $C_{st}(0)$
- It turns out that

with

Stationary variance

$$
\sigma_{st}^2 = \left[\frac{{}_1F_2(n;n+1,2n+1;- \lambda^2/4)}}{2{}_0F_1(2n;- \lambda^2/4)-{}_0F_1(2n+1;- \lambda^2/4)} - 1 \right] \langle x \rangle_{st}^2,
$$

$$
n = k\tau \qquad \lambda = \sqrt{2\tau(1+2\tau)}\sigma
$$

Stationary variance

Stationary variance

non-monotonic in general!

Phase diagram

Variance diverges

Stationary state is reached

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$
n = k\tau \qquad \lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c
$$

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$
n = k\tau \qquad \lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c
$$

Critical variance

 $2nJ_{2n}(\lambda_c) - \lambda_c J_{2n-1}(\lambda_c) = 0$

$$
n = k\tau \qquad \lambda_c = \sqrt{2\tau(1+2\tau)}\sigma_c
$$

- We studied a multidimensional linear system with colored-noise interactions
- Using the generating functional we derived equation for a representative d.o.f.
- We showed that the solution is a Gaussian process
- We derived and solved equations for the mean and autocorrelation, solving exactly the system
- We found some unexpected features!
	- non-monotonic variance
	- re-entrant phase transition

Conclusions

- Possible extensions
	- hierarchical structure in interactions
	- finite connectivity
	- non-Gaussian interactions
- What happens with a combination of quenched and annealed disorder?
- stability of complex systems to time-dependent equilibria?

• Can the framework of annealed disorder be used to extend May's result on

Perspectives

Acknowledgements

Sandro Azaele Christian Grilletta Amos Maritan Samir Suweis

Thank you for your attention!

Laboratory of Interdisciplinary Physics National Biodiversity Future Center University of Padova **Italy**

School of Mathematics - China University of Mining and Technology - 24 October 2024

Francesco Ferraro