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Quick intro to DMFT

 Examples of many-body dynamics

- Generalized Lotka-Volterra equations Ni =N, [1 — N; + Z O‘z'ij]
J#i
- Replicator equation X; = X; [fi A f ] Ji = Z (u — sz)xj
J#i
- Firing-rate models = —h. + Z tanh(gh)
JF1

- With many degrees of freedom: random interaction parameters

 |nteraction term is random, Gaussian by CLT, time-dependent
= (Gaussian process

Z% N@ —  n)



Generalized Lotka-Volterra equations

. [1 ST Z aijxj] Var(a.)) = 6*/N
j (a'ij) — 0

 DMFT equation is

() = pix(®))

b= x[l = x4 (nON)). = SHx(Dx(1))



Phase diagram and SAD
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[Bunin PRE 2017, Galla EPL 2018]



Limitations of random GLV

* Predicted SAD seems universal but not observed experimentally
* Presence of unbounded growth is unphysical
 GLV assumptions:

- Interactions are fixed in time (quenched)

- Interactions are instantaneous

- Interactions are Gaussian

- growth response is linear



GLV with time-dependent interactions

J

e |nteractions are modeled as colored noise

25 O <Zij(t)> =0
N N I (z;{(D)z;(1)) = Ot — 1') eIt

e DMFT is
(n(1)) = pux(1))
(1)), = 6°0t — t'){x(H)x(t'))

[Suweis et al. - arXiv:2307.02851]

x=xh—x+n]



GLV with time-dependent interactions

« SAD is interpolation between Gamma (r = 0) and Gaussian (7 = o)
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[Suweis et al. - arXiv:2307.02851]




Linear system with colored-noise interactions

() = h—kx(t) + ) o (0)x0)
J
o Distribution of x; at stationarity is Gaussian with

62 Fy (nyn+1,2n + 1; — 4°/4) 1
()2 20F, (2n; — 22/4) — oF; (20 + 1; — 22/4)

n=kr 1=[27(1+20)]"0

* Unexpected features emerge! Check out Christian’s poster...
e.g: variance of x; increases or decreases with correlation time of noise?

[Ferraro et al. - arXiv:2405.05183]



GLV with delayed interactions

i(1) = x(1) [1 — X (t=1) + ) ayx(t— f)]
JFL

i(1) = x()[1 = x(t=7) + (), | f——x
(ﬂ(t)) — <x(t—T)> 5 25 s 75 100 15 130 175 200
m(On)), = x(t—2)x(t'-17))

x(t)




GLV with non-Gaussian interactions

« Usual assumption is only two cumulants dominate at large NV

. 1
lim N log{e”*) = iuz——0°z*
N—> o0 2

 What if all cumulants are of order N~12

lim N log(e'™) = F(z)

N— o0

N* = max (0,1 + ) P(n) = J;Z—Z exp lizr] + J dn'P(n')F(z + Zﬂ')l

2 —1

|[Azaele, Maritan - arXiv:2306.13449]



GLV with saturation function

* Non-linear response function

X =X [1 — X; + Z a;j J(xj)] J(x;) = X;

i K —+ XJ
 No unbounded growth * [wo distinct chaotic regimes
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Conclusions

 Many possible extensions of usual DMFT are possible!
Interactions can be:

- colored-noise / “annealed”
- delayed

- non-Gaussian

- hon-linear
* These modifications give rise to ecologically relevant phenomena in GLV

 Framework applicable to any many-body dynamics

Thank you for your attention!



