

GENERALIZED LOTKA-VOLTERRA EQUATIONS WITH STOCHASTIC DISORDER

S. Suweis, <u>Francesco Ferraro</u>, S. Azaele, A. Maritan arXiv:2307.02851

University of Padova

francesco.ferraro.4@phd.unipd.it

Generalized Lotka-Volterra equations

$$\frac{dN_i}{dt} = \frac{r_i}{K_i} N_i \left(K_i - N_i - \sum_{j \neq i} \alpha_{ij} N_j \right)$$

Describe well-mixed ecological community with S species

- N_i : number of individuals of species i = 1, ..., S
- *r_i* : intrinsic growth rate
- *K_i* : carrying capacity
- α_{ij} : effect of species j on growth of species i

GLV equations and statistical physics

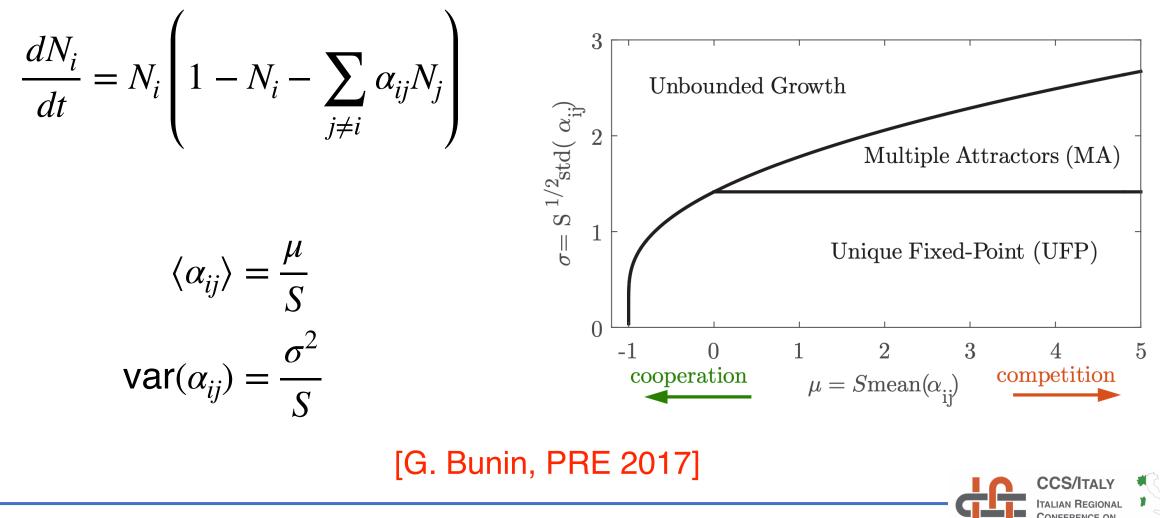
$$\frac{dN_i}{dt} = N_i \left(1 - N_i - \sum_{j \neq i} \alpha_{ij} N_j \right)$$

• With many species tools from statistical physics can be used • Usual assumption: interactions α_{ii} are <u>random</u> and <u>fixed in time</u>

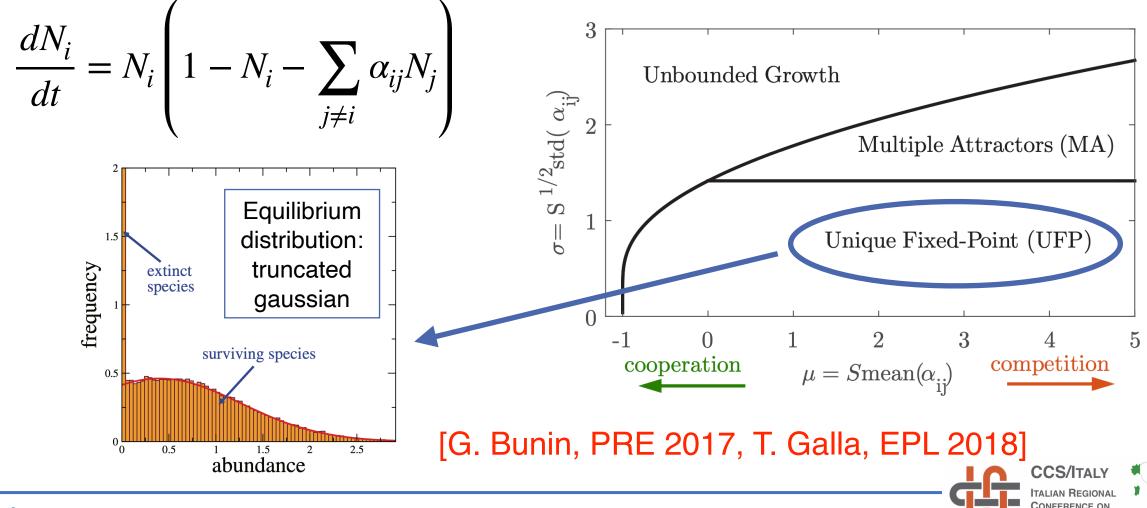
$$\langle \alpha_{ij} \rangle = \frac{\mu}{S} \qquad \operatorname{var}(\alpha_{ij}) = \frac{\sigma^2}{S}$$

0

Phase diagram of GLV equations



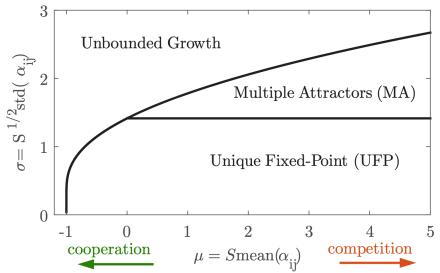
Equilibrium distribution of GLV equations

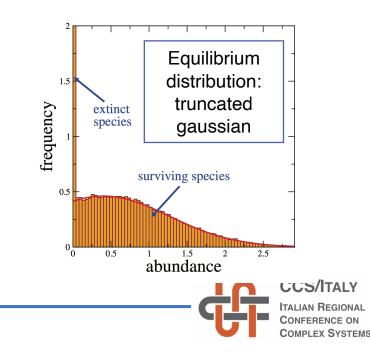


Limitations of GLV equations

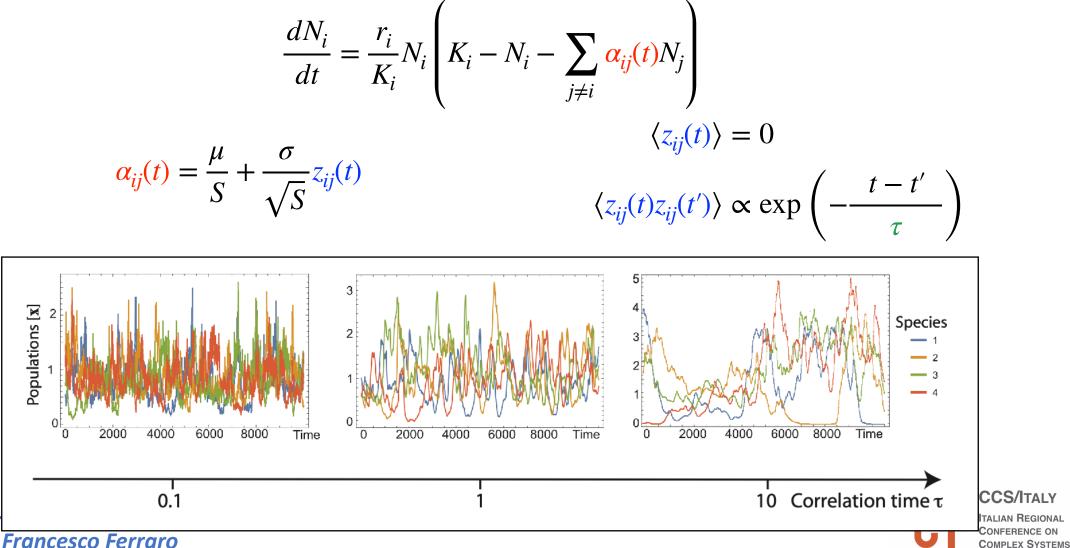
$$\frac{dN_i}{dt} = N_i \left(1 - N_i - \sum_{j \neq i} \alpha_{ij} N_j \right)$$

- Equilibrium distribution is not realistic
- Unbounded growth is non-physical
- Interactions may change in time





GLV equations with stochastic interactions



DMFT for GLV with stochastic interactions

• In the limit of large number of species dynamics of community is equivalent to Dynamical Mean-Field Theory

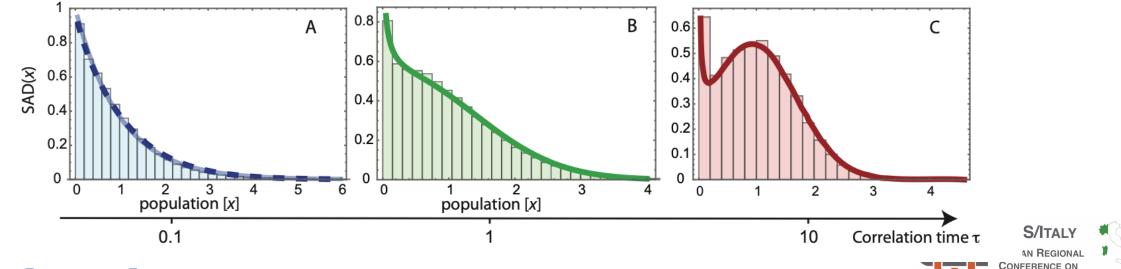
 $\eta(t)$ Gaussian noise with

$$\begin{split} \left< \eta(t) \right> &= \mu \left< N(t) \right> \\ \left< \eta(t) \eta(t') \right>_c &= \sigma^2 P(\Delta t) \left< N(t) N(t') \right> \end{split}$$

Equilibrium distribution: UCNA approximation $dN/dt = N [1 - N + \eta(t)]$

- No solution for equilibrium distribution due to colored noise
- With Unified Colored-Noise Approximation:

$$P_{eq}(N) \propto \left(\frac{1}{\bar{\tau}} + N\right) N^{-1+\delta} e^{-N/D} \cdot e^{-\bar{\tau}(N-\bar{N})^2/2D}$$

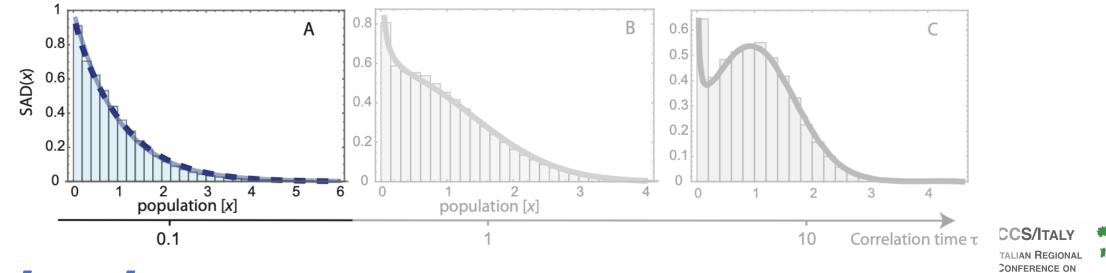


COMPLEX SYSTEMS

Equilibrium distribution in white-noise limit

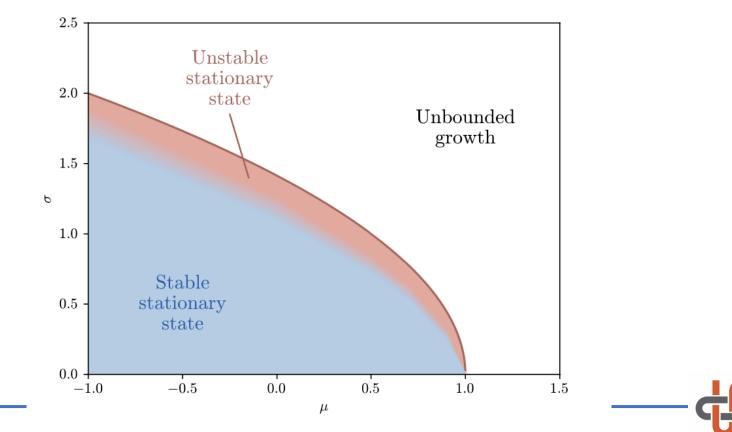
• For $\tau \to 0$ the <u>exact</u> equilibrium is

 $P_{eq}(N) \propto N^{-1+\delta} e^{-\beta x}$



Stability of equilibrium in white-noise limit

• Due to non-linearity of Fokker-Planck equation stationary state is not always reached



Summary of results

- New paradigm of stochastic disorder in GLV equations
- Derivation of DMFT equation
- Equilibrium distribution within UCNA approximation
- Exact equilibrium distribution in the limit au
 ightarrow 0
- Numerical insight on stability of white-noise equilibrium

Further work and perspectives

- Why can't the stationary be always reached?
- Unbounded growth still present
- Correlations between different α_{ii}
- Both quenched and stochastic disorder (noisy interactions)
- Application to other equations

Further work and perspectives

- Why can't the stationary be always reached?
- Unbounded growth still present
- Correlations between different α_{ii}
- Both quenched and stochastic disorder (noisy interactions)
- Application to other equations

THANK YOU FOR YOUR ATTENTION!

S. Suweis, <u>F. Ferraro</u>, S. Azaele, A. Maritan

University of Padova francesco.ferraro.4@phd.unipd.it

