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Modeling of a colloid

e Motion in a thermal bath

: oH
X=—v F E(7)
0X . .
stochastic forcing due to
external potential collisions with fluid molecules
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Modeling of a colloid

e Motion in a thermal bath

x=-20 E(1)
— anI

* In a harmonic trap H = kx?*/2

(X(1)) = X(0) exp <——)

T ¢4/
X = k (X(OX(t)) = —exp <— Linid >

Tx
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Modeling of critical media

* Exploit scale invariance near critical point
<> coarse-grain
= obtain field theory of order parameter

b,
4

Hig] = [aix | L+ Lrgr v Lugt +
HU¢} = ), ¢+ - = : i+
(i)

= ¢h(x) evolves slower than microscopic d.o.f.
= any™ dynamics collapses to

0.p(x) = —D o C(x, 1)
y _X‘ — I x9
5¢(X) stochastic forcing
relaxation to eq.
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Modeling of critical media

e ...any dynamics up to conservation laws

e No conservation laws

0,0 = — - 4 cx
P == Dy Tl

d
— | g )=0
e Conserved field — dt[ Pl )

d,(x) =DV~ o FC(x, 1)
op(x)
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Modeling of critical media

e ...any dynamics up to conservation laws

e No conservation laws

O (x) = —Défb’; - ((a

e Conserved field

0,p(x) = DV 5% FEx, )
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The model: which interaction?
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The model: which interaction?

c ' particle
LU Ll interaction shape

strength
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Relaxation to equilibrium: model A

e Tx > Ty with:
(X)) ~ 1?2 oty 7, > 7y ol( 14 .= 1/vk
~(dI2+1) . vy = 1/Dr
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Autocorrelation: model A

e Same behaviour as relaxation

e_t/TX

(X - XO) ~ 223e 7,51,

a2 r=20
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Dynamics in model B conserved field

—(d/242)
» ) I r> 0
X)) A {t—(d/4+1) r =0

t_(d/2+1)

(X(0) - X(0)) ~ /12{
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Critical behaviour of dynamical quantities

Model A Model B
r e_t/Tx TX > T¢ y
—(d2+2)
2 1z 2 )1 r>0
(X(t)) ~ A% 7% Ty > Tx X@®) ~ 4 {t—(d/4+1) -0
=(d2+1) =0
et/ Ty > Ty
—(d2+1)
2 1t 2 )1 r>0
(X - X)) ~ 27y 7>y (X0 - X)) ~ 4 {t—d/4 =0
42 r =20

e Relaxation and correlation behaviour is related

* Relation between particle crit exp and field crit exp!?
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Non-perturbative fluctuation dissipation relation

* |f system is slightly perturbed from equilibrium
X=..4+f0
then response of an observable
(0@)) = Jdt’R(r — 1) f(t)
is related to its equilibrium correlations as
R()  <-(0()0(0))
r “
e Setting X(0) = X,, is equivalent to f(¢) = X,5(¢)
e Taking O(t) = X(¥)

(X(t)>0<%<X(t)X(O)>eq —  (X(0) x T {X(X(0)),,
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Simulation algorithm and lattice polymer mapping

@ | J
e Field: discretized equation bl e
\" \“‘ "
\"
D DA
01p; = _2<¢i+1 + i — 2¢i> +¢ —Drg; + ——0;x
Ax Ax

Rouse model

e Particle: random walker

Wi—-ix+1) cxmin{l,exp

 H(i%1)— H(i) }
T
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Simulation algorithm and lattice polymer mapping
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Summary of results

* Equilibrium behaviour [see article]

e Critical exponents and universality [article] of
relaxation, autocorrelation, cross-correlation

e Connection to field scaling exponent z, e.g. [article]
<X(t)> - t—(d/z+1)
* Fluctuation-dissipation relation

d
(X(0) ~ E(X(t)X(OD

* Non-perturbative numerical validation
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Thank you for your attention!
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Extra

Mapping of single-component fluid to Ising
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Extra

Mapping of binary mixture to Ising

Hifo} = Y [eAAa,.aj+eABa,.(1 — )+ ] o
(i) ———* —
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Why colloids in critical fluids? Casimir force in QED

Casimir force

A
Casimir
Vacuum
plates fluctuations v
hc

Van der Waals
force

EFox ——
L3
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Casimir force in QED and StatPhys

QED StatPhys
Fluctuating
quantity E, B Order parameter ¢
Source of Quantum Thermal
fluctuations h>0 kT > 0
Range of 00 Correlation length &
fluctuations (m, = 0) oo at CP

Resulting force

Variable range &
after confinement

Long-range Long range at CP

[Review: Gambassi - [PCS "09]
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Critical Casimir force and patterned surfaces

Aggregation and assembly

a9y United States

a2y Patent Application Publication
MARINO et al.

(54) METHOD FOR ASSEMBLING
SEMICONDUCTOR NANOCRYSTALS
Levitation
15 41 R R=135um (b)L ,
E : ‘| ‘\ \\ P = O4Mm, A, = 065 COllOld
~ 10 ! “ “ ' L
=~ - v ‘=—E&, =60nm,¥=141 ---
< 3 L N =45mm, =162 --- |
Qﬁ 0 : ‘ \\ S .
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I s | :
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510 1 —26nm, =214 —
2 5 =2lnm, =238 —
e —19nm, =250 — [
20 41l —18nm, =257 — substrate
. . . . s | A s =10nm, =344 —
[Review: Gambassi, Dietrich - Soft Matter ’1 0] ' ' '
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Why colloids in critical fluids? Critical Casimir force

T-TczO.S OC T'-I-CzoI OC
& =40 nm & = 500 nm

Fixed trap Steerable trap

[Martinez, Devailly, Petrosyan, Ciliberto - Entropy MDPI °1 9]
[Martinez youtu.be/WnQdMgqipM]


https://youtu.be/-jWnQdMqipM

Dynamical behaviour of Brownian particles coupled to a critical field

Why colloids in critical fluids? Critical Casimir force

T-Tczo.s OC T'-I-CzoI OC
& =40 nm & = 500 nm
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[Martinez, Devailly, Petrosyan, Ciliberto - Entropy MDPI °1 9]
[Martinez youtu.be/WnQdMgqipM]
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Equilibrium distribution of the particle

P, (X) x n[dgb]e—ﬁﬂ[qb,X] w(x) = G(x + X)

eq
= ot | [dple ot dp] = [dy!]
J H¢[¢ = H,ly]
X e_ﬁHX Hinl‘[¢a X: — Hin[[l/j?()]
041 T ii}zzition #\\ A>1)
Any field theory / \‘

Any field-particle coupling
Any external potential

Peq(y)
o
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