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• Motion in a thermal bath

Modeling of a colloid
Dynamical behaviour of Brownian particles coupled to a critical field

·X = −ν
∂H
∂X

+ ξ(t)
stochastic forcing due to 

collisions with fluid moleculesexternal potential



• Motion in a thermal bath


• In a harmonic trap H = kx2/2

Modeling of a colloid
Dynamical behaviour of Brownian particles coupled to a critical field

⟨X(t)⟩ = X(0) exp (−
t

τX )
⟨X(t)X(t′￼)⟩ =

T
k

exp (−
| t − t′￼|

τX )
…

τX =
1
νk

·X = −ν
∂H
∂X

+ ξ(t)
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• Exploit scale invariance near critical point 
 ➫ coarse-grain 
 ➫ obtain field theory of order parameter 
 
 
 
 
 
 
 
 ➫  evolves slower than microscopic d.o.f. 
 ➫ any* dynamics collapses to

ϕ(x)

ϕi ϕ(x)

…

H[{ϕi}] = ∑
⟨ij⟩

ϕiϕj + … H[ϕ] = ∫ ddx [ 1
2

(∇ϕ)2 +
1
2

rϕ2 +
1
4!

uϕ4 + …]

∂tϕ(x) = − D
δH

δϕ(x)
+ ζ(x, t)

stochastic forcing
relaxation to eq.
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• No conservation laws
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ϕ(x, t)

Hext =
1
2

kX2

X(t)

Model A-B
&

Gaussian
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ϕ(x, t) ?

Hext =
1
2

kX2

X(t)

Model A-B
&

Gaussian ∫ dx[ϕ(x) + ϕ(x)2 + … + ∇ϕ(x) + …]V(x − X)
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ϕ(x, t)
λ∫ ϕ(x)V(x − X)

Hext =
1
2

kX2

X(t)

Model A-B
&

Gaussian

Dynamical behaviour of Brownian particles coupled to a critical field

The model: which interaction?

particle 
shapeinteraction 

strength
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• Same behaviour as relaxation

Autocorrelation: model A
Dynamical behaviour of Brownian particles coupled to a critical field

⟨X(t) ⋅ X(0)⟩ ∼ λ2

e−t/τX τX > τϕ

e−t/τϕ τϕ > τX

t−d/2 r = 0



Dynamics in model B conserved field
Dynamical behaviour of Brownian particles coupled to a critical field

⟨X(t) ⋅ X(0)⟩ ∼ λ2 {t−(d/2+1) r > 0
t−d/4 r = 0

⟨X(t)⟩ ∼ λ2 {t−(d/2+2) r > 0
t−(d/4+1) r = 0



Critical behaviour of dynamical quantities
Dynamical behaviour of Brownian particles coupled to a critical field

⟨X(t) ⋅ X(0)⟩ ∼ λ2

e−t/τX τX > τϕ

e−t/τϕ τϕ > τX

t−d/2 r = 0

⟨X(t)⟩ ∼ λ2

e−t/τx τX > τϕ

e−t/τϕ τϕ > τX

t−(d/2+1) r = 0

⟨X(t) ⋅ X(0)⟩ ∼ λ2 {t−(d/2+1) r > 0
t−d/4 r = 0

⟨X(t)⟩ ∼ λ2 {t−(d/2+2) r > 0
t−(d/4+1) r = 0

Model A Model B

• Relaxation and correlation behaviour is related


• Relation between particle crit exp and field crit exp?



Non-perturbative fluctuation dissipation relation
Dynamical behaviour of Brownian particles coupled to a critical field

• If system is slightly perturbed from equilibrium 
 
 
 
then response of an observable  
 
 
 
is related to its equilibrium correlations as


• Setting  is equivalent to 

• Taking 

X(0) = X0 f(t) = X0δ(t)

O(t) = X(t)

⟨O(t)⟩ = ∫ dt′￼R(t − t′￼) f(t′￼)

·X = … + f(t)

R(t) ∝
d
dt

⟨O(t)O(0)⟩eq

⟨X(t)⟩ ∝
d
dt

⟨X(t)X(0)⟩eq ⟨X(t)⟩ ∝ t−1⟨X(t)X(0)⟩eq



• Field: discretized equation


• Particle: random walker

Simulation algorithm and lattice polymer mapping
Dynamical behaviour of Brownian particles coupled to a critical field

∂tϕi =
D

Δx2 (ϕi+1 + ϕi−1 − 2ϕi) + ζi − Drϕi +
Dλ
Δx

δi,Xt

ϕi

W(i → i ± +1) ∝ min {1, exp [−
H(i ± 1) − H(i)

T ]}

Rouse model



Simulation algorithm and lattice polymer mapping
Dynamical behaviour of Brownian particles coupled to a critical field

Low T, λ = 2

High T, λ = 0.5 Finite-size scaling



• Equilibrium behaviour [see article]


• Critical exponents and universality [article] of 
relaxation, autocorrelation, cross-correlation


• Connection to field scaling exponent , e.g. [article]

• Fluctuation-dissipation relation


• Non-perturbative numerical validation

z

Summary of results
Dynamical behaviour of Brownian particles coupled to a critical Gaussian field

⟨X(t)⟩ ∼ t−(d/z+1)

⟨X(t)⟩ ∼
d
dt

⟨X(t)X(0)⟩



Thank you for your attention!

Dynamical behaviour of Brownian particles coupled to a critical Gaussian field
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Mapping of single-component fluid to Ising
Extra

1

{ϵσiσj

10

H[{σ}] = ∑
⟨i,j⟩

ϵσiσj



Mapping of binary mixture to Ising
Extra

0 1

ϵAAσiσj

ϵBB(1 − σi)(1 − σj)
{

{

ϵABσi(1 − σj) ϵAB(1 − σi)σj

{ {

H[{σ}] = ∑
⟨i, j⟩

[ϵAAσiσj + ϵABσi(1 − σj) + …]
= A∑

⟨i, j⟩

σiσj + B∑
i

σi



Why colloids in critical fluids? Casimir force in QED
Dynamical behaviour of Brownian particles coupled to a critical field

Casimir force

Van der Waals 
force

E ∝ −
ℏc
L3



 
 
 

Fluctuating 
quantity 

 
 

Source of 
fluctuations 

 
 

Range of 
fluctuations 

 
 

Resulting force 
after confinement 

QED 
 
 
,  
 
 

Quantum 
 

 
 
 

 
 
 

Long-range 

StatPhys 
 
 

Order parameter  
 
 

Thermal 
 

 
 

Correlation length  
 at CP 

 

 
Variable range  
Long range at CP

E B

ℏ > 0

∞
(mγ = 0)

ϕ

kT > 0

ξ
∞

ξ

Casimir force in QED and StatPhys
Dynamical behaviour of Brownian particles coupled to a critical field

[Review: Gambassi - JPCS ’09]


•



Critical Casimir force and patterned surfaces
Dynamical behaviour of Brownian particles coupled to a critical field

T Tc

Levitation

Aggregation and assembly

[Review: Gambassi, Dietrich - Soft Matter ’10]


•
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critical 
 

T - Tc ≈ 0.1 °C 
ξ ≈ 500 nm

non-critical 
 

T - Tc ≈ 0.5 °C 
ξ ≈ 40 nm

[Martinez, Devailly, Petrosyan, Ciliberto - Entropy MDPI ’19] 
[Martinez youtu.be/-jWnQdMqipM]


•

https://youtu.be/-jWnQdMqipM
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critical 
 

T - Tc ≈ 0.1 °C 
ξ ≈ 500 nm

non-critical 
 

T - Tc ≈ 0.5 °C 
ξ ≈ 40 nm

optical trap

distance between colloids (µm)

en
er

gy

[Martinez, Devailly, Petrosyan, Ciliberto - Entropy MDPI ’19] 
[Martinez youtu.be/-jWnQdMqipM]


•

critical 
Casimir 

force

https://youtu.be/-jWnQdMqipM


Equilibrium distribution of the particle
Dynamical behaviour of Brownian particles coupled to a critical field

Peq(X) ∝ ∫ [dϕ]e−βH[ϕ,X]

= e−βHX ⋅ ∫ [dϕ]e−β(Hϕ+Hint)

∝ e−βHX

[dϕ] = [dψ]
Hϕ[ϕ] = Hϕ[ψ]

Hint[ϕ, X] = Hint[ψ,0]

ψ(x) = ϕ(x + X)

(λ ≫ 1)

Any field theory 
Any field-particle coupling 
Any external potential


