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"pure lines" which differ among themselves but are per se constant in
size, but, due to the peculiar way in which rats receive their infections, a
given infection consists of only a very few of these lines. In fact, a large
number of "wild" infections are probably actual "pure lines."

I Throughout this work the term "pure line infection" is used to designate an
infection, the trypanosomes of which have all arisen from a single organism. A given
"pure line" may either have been started from a single trypanosome, or it may have been
subinoculated from such an infection. The term "wild infection" designates an infec-
tion as found in nature.

2These PROCZEDINGS, 7, 1921 (138-143).
3The mean sizes in this report are all in microns.
4Minchin, E. A., and Thomson, J. D., Quart. J. Microsc. Sci., 60, N. S., 1915

(463-692).
5Gondor, R., Centralbl. Bakt., etc., I abt., Originale, 612, 1911 (102-113).
6 Robertson, M., Proc. Roy. Soc., (B) 85, 1912 (241-248).
7Jennings, H. S., J. Exper. Zool., 11, 1911 (1-134); Ibid., 14, 1913 (270-391).
8 Erdmann, R., Archiv. Entwicklungsmech. Organ., 46, 1920 (85-148).
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A number of previous publications1 have been devoted to the study,
from various angles, of a material system evolving in accordance with a
system of differential equations

dX, / dt= F.(Xi, X2, . ..;Al, A2, . .;P; Q)(1)
where the X's denote the masses of the several components of which the
system is built up; the A's are parameters introduced by any equations
of constraint to which the X's may be subject;2 the parameters P include
geometrical constraints (volume, area, topography) and also other quanti-
ties serving to define the state of the system (temperature, etc.). The Q's
define the character of the several components or species.
The discussion has hitherto been restricted to the case that the param-

eters A, P, Q remained constant during the transformations taken in
view. A complete discussion of the evolution of systems of the kind re-
ferred to must include also the consideration of changes in these param-
eters.
Such changes may be grouped under three heads:
1. Changes of a perfectly general character. A study of these would re-

solve itself into a discussion, on a general basis, of a system of differential
equations of the form

(2)
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It is not intended to enter here into this perfectly general case. It will suf-
fice to point to the purely mathematical literature on the subject.3

2. Changes in the parameters A, P, Q proceeding very slowly as com-
pared with the speed of readjustment of the X's. In this case the system,
after passing through a "transient" state, ultimately settles down to a
"moving equilibrium." The study of this case therefore comprises two
phases, which may with advantage be taken up separately. The phase of
the moving equilibrium is of particular interest, since such moving equili-
bria play an important r6le in the evolution of physical systems, as pointed
out years ago by Herbert Spencer.4

3. We may study the effect of a change in a parameter A, P or Q upon
the equilibrium of the system alone, irrespective of the process by which
that equilibrium is reached. It is in this case immaterial whether the
change is slow or rapid. Into this division of the subject fall such relation
as the principle of Le Chatelier, the thermodynamic laws of equilibrium
and the "reciprocal relations" of statistical mechanics.
The application of some of these principles to biological and social sys-

tems has been essayed, but it cannot be said that the rigor of the attempts
thus made is satisfactory. It would therefore be desirable to go over the
ground and consolidate it. An effort in this direction is taken in view as
part of the plan into which the present contribution is fitted.,
Of the general field outlined above, the portion to which we shall now

give our attention is that of moving equilibria.
Our fundamental system of equations we shall, for our present purpose,

write in the form (2). Furthermore, merely in order to simplify our nota,
tion, we will restrict the number of dependent variables to two, which, to
avoid subscripts, we will denote by X, Y. We have, then

dX/dt= F1(X, Y, t), dY/dt=F2(X, Y, t). (3)
We adopt a method of successive approximations. Since the system is

near equilibrium, we write for our first approximation
0 =F1(X, Y, t), 0 =F2(X, Y, t). (4)

Solving for X and Y we then have
Xi =,(t), XI = pi(t). (5)

whence by differentiation
dX1/dt=Xi' = v'i1(t), dYI/dt= Y'1=,/1(t). (6)

Proceeding to a second approximation, we substitute (6) in (3).
ip1(t)=Fl, 46', (t)=F2. (7)

Solving again for X, Y,
X2-< 2() Y2=4k(t) (8)

We may again differentiate,
xi2= p'2(t), Y2= 0//2(t). (9)

and, substituting as before, we obtain a third approximation. We con-
tinue this process as far as may be desired, and finally obtain for the n th
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approximation
X1 =(Pn(t),' Yn = An(t) * (10)

If the functions (p, 0, and pspl, '",, obtained by these successive approx-
imations tend toward a limit as n is increased indefinitely, then it can
easily be shown that (10) is a solution of (3).

It seems to be somewhat difficult to give in generaJl terms the conditions
for this convergence of successive approximations toward a limit. How-
ever, the following example will show how in individual cases the question
regarding this convergence can sometimes be readily answered.
For our example we take the case of radioactive equilibrium. We have

a chain of transformations
A oB- pC oD (11)

We will denote the masses of A, B, C, D at time t, respectively, by U, X, Y,
Z, and their values at time t = 0 by the same letters with the subscript
zero.
We may if we choose (this is a pu,rely arbitrary matter) pick out the sub-

stances B and C for our evolving system, and look upon A and D as exter-
nal factors influencing the system. The system composed of B and C is
then subject to an equation of constraint

X+ Y=Xo+ YO+ Uo-U+Zo-Z (12)
in which the quantities appearing in the right hand member are param-
eters of the class denoted above in equation (1) by A, that is to say, par-
ameters introducedby the equation of constraint. Four of them are con-
stants, the other two are functions of t. Of these last two one, namely
U, will appear in the equations representing the course of evolution of the
system composed of B and C. These equations, according to the well-
known laws of radioactive transformations are

dX/dt=aU - bX, dY/dt=bX - cY. (13)
where a, b, c are constants. U, on the other hand, is a function of the time,
namely

U= Uoe- (14)
For our first approximation we put, then,

dX/dt = 0 = aUoe-a -bX1 dY/dt = 0 = bX1-cY, (15)
whence

X= a/b. UoeYat, = a/c. Uoe (16)
and therefore

Xi, = -a2/b. Uoe-a Y'1 - -a2/c. Uoe-at. (17)
The second approximation now gives

dX/dt =X'1= -a2/b. Uoe-at =aUoe_a- bX2 (18)
dY/dt- Y'1=- a2/c. Uoe-a=bX2- CY2 (19)

Whence
X2= a/b. Uoe-a ( 1 + a/b) (20)
Y2= a/c. Uoe-a ( 1 + a/b + a/c) (21>
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Continuing this process we find, ultimately,
X.= a/b Uoe-' (1 + a/b + a2/b2 +...) (22)

Y, =a/c Uoe-' (1+ a/b + a/c + a2/b2 + a2/bc + a2/c0 + ...) (23)
In this example the condition for the convergence of the successve ap-

proximations is immediately apparent. We must have
a/b<1, a/c<1; (24)

that is to say, the parent substance A must have a smaller decay constant
than any of the succeeding members of the series. For obvious reasons
this condition is always satisfied in natural radioactive mixtures.6
The series (22), (23) bring out the relation between the uncorrected

equilibrium, as commonly computed on the assumption of constancy of
mass of the parent substance, and the true equilibrium. The first-
mentioned (for which Rutherford has suggested the term "secular equi-
librium") is represented by the first term of the series. As Rutherford
points out, the error of the first approximation, i.e. the difference between
the secular and the true equilibrium, amounts, in some cases, to nearly 1%
though in others the error is quite negligible.
The series are easily summed, and then lead to the well-known expres-

sions obtained by other methods (for the equations of radioactive change
are readily integrable in finite terms, while the method here developed is
applicable also in more refractory cases).
The case of radioactive equilibrium was here selected as an llustration,

primarily because the functions involved are known and of simple form.
But the same example will serve very aptly to illustrate also some other
points.

In the first place we observe that moving equilibria might be divided
into three classes, according as their progress is determined by a change in
the P's, the Q's or the A's. As has been shown, the radioactive equilib-
rium is of the type in which the pace is set by a parameter of the class A,
namely the mass of one of the links in the chain, which thus acts as a brake,
or a limiting factor checking the series of transformations. Such limiting
factors play an important r6le also in the highly complex network of inter-
locking cycles upon which the continuance of abundant life upon the
earth depends. For life processes are energy transformation processes
carried out by the agency of material energy transformers. Such trans-
formers, if they are to work continuously and indefinitely must perforce
work in dlosed transformation chains or cycles (such as the cycle C02-*
Plant- -Animal-- CO2). The moving equtilibria engendered in such sys-
tems of cycles by a slow change in a limiting factor, in a parameter of
class A, invite further study. The influence of man upon the world's
events seems to have been largely to accelerate the circulation of matter
and energy through s'uch cycles, either by "enlarging the wheel", i.e., in-
creasing the mass taking part in certain cycles, or else by causing it to
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"spin faster," i.e., increasing the velocity of the circulation, decreasing
the time required for a given mass to complete the cycle. In either case
he has increased the energy turn-over per unit of time. Whether, in this
he has been unconsciously fulfilling one of those laws of nature according
to which certain quantities tend toward a maximum, is a question well de-
serving of our attention.

* Papers from the Department of Biometry and Vital Statistics, School of Hygiene
and Public Health, Johns Hopkins University, No. 44.
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1. In this paper I obtain for the viscosity of a liquid the formula
nNh

X2M (X-v J-(1)
where N is the number of molecules in a mol, h is Planck's constant, M is
the molecular weight of the liquid in the gas phase, v its volume per gram,
and n an integer. The quantity a is the co-volume as used in the equa-
tion of state of Keyes'

RT A, (2)
P v-6 (v-i)2

In all the cases to which I have applied the formula, n= 6 and so (1) tak-es
the form

(v-5) = 3Nh/M (3)
It is to be noted that 3N/M is the number of translational degrees of
freedom of the molecules in the volume v of the liquid.

2. To prove equation (1), let x, y, z be rectangular coordinates and sup-
pose the liquid to flow parallel to the x-axis in such a way that, u0 being
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