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 F. J?TTNER* has given a general discussion of the differential equa
 tions of chemical dynamics, in so far as they apply to a single chemical
 reaction taking place in accordance with the law of mass action.

 A certain interest attaches to a still more general treatment which
 should make us independent of the law of mass action, and which
 should cover the wider field of concurrent reactions of various types.
 Such a treatment is therefore given below.

 The systems with which we have to deal comprise a number of
 components Si S2. . .Sn, whose mass at any instant may be denoted
 by Xi X2.. .Xn. Observational data furnish directly or indirectly a
 system of differential equations2

 dXi
 dt
 dXi
 dl

 Fi(Xi, X2, . . . Xn\ Pi,P2,... Pj)

 ?-F2(Xi, X2,.. . Xn; Pi, P2,... Pj)

 dXn
 ~dT ? Fn(Xi, X2,. . .Xn\ Pi, P2,. . .Pj)

 (1)

 1 Zeitschr. f. phys. Chemie, 1911, v. 77, p. 735. See also R. Marcelin,
 Ann. de Phys. 1895, v. 3, p. 120.

 2 The system of equations (1) although very general, does not, however,
 cover cases in which geometric factors (e. g. diffusion effects) play a dominant
 r?le. Such cases are therefore excluded from our present considerations.
 Certain reactions in heterogeneous systems, nevertheless, do fall within the
 scope of this discussion, namely those the velocity of which is small as compared

 with the rate of diffusion, so that the course of the reaction is determined prac
 tically by the reaction velocities alone, irrespective of diffusion velocity.

 A class of reactions which, perhaps, may not always fall within the scope of
 equations of the type (1) and (2) are so-called induced, sympathetic or coupled

 reactions. In such cases it may be that the velocities -j- can not be repre

 sented as functions of the X'a alone, but that the velocities -j- themselves  at
 must appear explicitly in these functions.
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 The quantities Pi P2. . . P3 which occur in (1) are certain parameters,
 such as for example the volume and the temperature 3 of the system in
 course of transformation. The case commonly considered is that in
 which these parameters P are kept constant (or, as in radio-active
 transformations, the case in which pressure, temperature, etc. are

 without influence upon the transformation). We shall for the present
 at any rate, adopt this customary convention, which in point of fact
 represents the case of prime interest both in theory and in practice.
 The parameters P being constant, we may, for our present purposes,
 omit them from the functional parentheses in (1), so that we have,
 in effect,

 dXi
 dt
 dX2
 ~df

 = Fi(Xi, X2). . .Xn)

 = F2(Xi, X2,. . .Xn)

 ?r- ? Fn(X\, X2, . . . Xn) J at

 (2)

 It is expedient to introduce new variables as follows :
 Putting

 Fi = F2= ... = Fn = 0
 we obtain 4

 Xi=d
 X2 = L>2

 ?.n ? L/n
 We will write

 Xi == JL i C i
 and introduce x in place of X in (2).
 We then have:

 dxi
 dt = /tOl, X2,. . .Xn)

 (3)

 (4)

 (5)

 (6)

 3 The choice of the parameters P is more or less arbitrary, but in any case
 the general form of the equations (1), (2) is independent of the particular
 choice made.

 4 This system of equations will in general have a number of solutions, cor
 responding to so many different states of equilibrium. In the cases ordinarily
 considered in physical chemistry, however, one of these solutions is of special
 or sole interest.
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 In the expansion of the right-hand member of (6) by Taylor's
 theorem the-absolute term must be zero, in view of (5), hence

 dxi
 Ht
 dx2
 Ht

 = CL\\ Xi + a]2 Xi. + . . . + din Xn +

 = ?21 Xi + ai2 Xi + ... + 02n Xn +  (7)

 dx
 ?^ = ani xi + an2x2+ . . . + annxn + dt

 A general solution of this system (7) is 5

 Xl = a{ e^+ai e x?' + , . . +aie^* )
 + aii e2^1 + ?22 e2X*1 + . . . + aln e2Kt
 + al2e(x^l+ ...

 xi = <AeKi'+o&e**t+ ...

 where Xi, X2,. . .Xn are the n roots 5a of the equation of nth degree

 ?ii?X a32 ?i3 . axn
 ?21 ?22 ? X a2Z . . . Win

 (8)

 ani  an2  ann A

 = A (X) = 0  (9)

 5 See Picard, Trait? d'Analyse, 1908, v. 3, p. 14; Forsyth, Theory of Differ
 ential Equations,-1900, v. 3, pp. 2, 8, 9; K?nigsberger, Lehrbuch der Theorie
 der Linearen Differentialgleichungen, 1889, p. 283.

 5a The quantities X in (8), (9) are subject to certain restrictions. See Picard,
 loe. cit., pp. 9, 10; 17, 18. The method of determination of certain of the
 constants a in (8) also breaks down in the special case that two or more of the
 roots of (9) are equal, or differ only by an integral factor.

 We shall not here discuss the case of multiple roots of equations (9), which
 presents no particular difficulty (see K?nigsberger loe. cit.; Lotka, Zeitschr.
 f. Phys. Chemie, 1912, v. 80, p. 161); nor the case in which the series in the
 right hand members of (7) contain no terms of the first degree. This case
 does not appear to admit of general treatment. Certain special cases have
 been treated by Picard, Poincar?, Dulac, Bendixon, Jordan. (See Dulac,
 Jl. Ec. Polytechn. IX cahier 1904; Bul, Soc. Math. 1906; Bendixon, Acta

 Math. 24; Jordan, Jl. Math. 1906).' It should be noted that if the series (8)
 begin with the terms of second degree, for example, a change in sign only of

 all the variables x leaves the velocities -=- unaltered, for small displacements,

 Such a state of affairs does not correspond to the nature of the physical sys
 tems and processes here under discussion. This special case which presents
 certain mathematical difficulties, is therefore also a case of no practical interest
 for our present discussion.
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 The law of expansion of the determinant A (X) is readily recognized
 if we use Cauchy's notation, in which a. determinant is defined by
 writing down the terms of its dexter diagonal enclosed in parentheses.
 In the case that n = 4, for example, we have6

 X4 - {an + ?22 + ?33 + ?44}X3
 + {(?11 ?22) + (?11 ?33) + (?11 ?44) + (?22 ?33) + (?22 ?44) + (?33?44)}X2
 ? {(?11 ?22 ?33) + (?11 ?22 ?44) + (?11 ?33 ?44) + (?22 ?33 ?44) }X

 + (?U ?22 ?33 ?44) = 0 (10)

 To determine the coefficients a, a" .... we substitute in (7)

 xi = ai eXit ]
 X2>= aJ.' eUt (H)

 Equating coefficients of homologous terms we then obtain

 ol? (?11 - Xt) + ?< ?12 + a"i ?13 + . . . = 0
 ai ?21 + oil (?22 - X?) +a?'an + . . . = 0
 al ?31 + a'i ?32 + a" (?33 ?X<)+. . . = 0  (12)

 The equations (12) are not independent, seeing that A (X) vanishes
 according to (9).

 The trivial solution (13)

 a'. = dl = aV = . . . = 0 (13)
 of (12) is of no interest. The existence of other solutions is assured
 by the vanishing of A (X) according to (9). One of the constants
 a'i, a'i,. . . remains arbitrary, and the proportion a?: a\\ a'i'.. . .is
 then determined in the well-known manner by the homogeneous
 linear system of equations (12). That is to say, if we form the
 determinant of the coefficients of a'i,a'i, a'i,... in the left-hand mem
 bers of (12), and if we denote by A?', Aa , A?j/,... the minors of the
 coefficients of a?, a[, a'"... in any one selected row, then

 a'i'. a'i\ ot" :  ::A?/:A?'/: A*;/:. (14)

 6 See, for example, Czuber, Einf?hrung in die h?here Mathematik, p. 178.
 The symbols enclosed in round parentheses denote the determinants of which
 these symbols form the dexter diagonal.
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 The coefficients a'a, a"u,... of the terms of second and higher degree
 are determined in analogous manner.

 Equations (3), which have so far been introduced merely as a
 mathematical auxiliary, have an obvious physical significance. They
 represent the conditions for a steady state or an equilibrium.
 Now, if Xi, X2. . . Xn are entirely independent, it will be seen that

 (3) completely determines the equilibrium. Physically this means
 that in such a case, when the values of the parameters P (e. g. volume,
 temperature) were once fixed, there would then be no further freedom
 whatever in fixing the equilibrium. This 1 atter would then, for example
 be wholly independent of the masses of the several components of the
 system.

 This does not correspond to the actual conditions ordinarily met with
 in cases of concrete interest. In such cases there are commonly given,
 in addition to the differential equations (1), which express the general
 kinetics of the system, a further set of equations of constraint 7 of the
 form

 $(X1; X2,...Xn) = 0 (15)

 In physico-chemical systems the equations of constraint are com
 monly derived directly from the reaction equations, of which, according

 7 Ordinarily the equations of constraint derived from the reaction equation
 contain the stoichiometric constants of those equations. However, in the case
 of certain simultaneous reactions, in which the products of the several reactions
 are formed in constant proportion, the function $ will contain also certain
 other constants defining this proportion and not themselves defined by the
 stoichiometric properties of the system.

 In the case most frequently dealt with in physical chemistry, the case of a
 system of constant total mass, one of the equations of constraint takes the form

 2 X = const.
 Furthermore, the immutability of the chemical elements (in ordinary reac

 tions) furnishes for each element e an equation of constraint.
 2 me = constant

 where me denotes the total mass of the element e present in the system.
 In special cases there may be constraints of entirely different character.

 Thus, in certain technical processes a stream of gas is passed over a catalytic
 substance in such manner that an approximately constant mass of the products
 of reaction issue per unit of time.

 In such case, in addition to equations of type (1) there will be given one or
 more equations of the form

 ?T- = constant = F (Ci, C2,.. . Cn)
 where C\, C2,... Cn are the (constant) concentrations of the substances Si
 $2, -Sn entering the reaction chamber.

 Cases of this kind do not fall within the scope of our present reflection.
 Their theoretical and practical treatment presents, however, no particular
 difficulties.
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 to circumstances, there may be one or more applying to the system
 under consideration. They commonly involve the initial values Ai,
 A2).. .An of Xi, X2).. .Xn as parameters, so that they are of the
 general form

 $ (Xi, X2,.. .Xn) Ai, A2,.. .An) = 0 (16)

 The effect of such equations of restraint is to cause the determinant
 A (0) to vanish.8

 For, in view of (2), (5), and (7) we may write (15) in the form

 <p(Xi, X2,. . .Xn) = 0 (17)

 which implies that

 J = L^ii?!i_^t) = o (18) d (Xh X2, . . . Xn)

 But inspection of (7) shows that

 ^s=(d-^) (19)
 and that therefore

 A (0) = J0 = 0 (20)9
 That is to say, the existence of equations of constraint causes the
 determinant A (0) to vanish, as was stated above.
 Furthermore, the vanishing of A (0) means that at least one of the

 roots X of (9) is zero. Since the left-hand members of (8) can not
 contain an absolute term, it follows that at least one of the coefficients
 a is thus no longer arbitrary, but is fixed at the value 0.
 This loss of an arbitrary constant in (8) must be in some way com

 pensated. This compensation is effected by the equation of con
 straint (15), which introduces as an arbitary constant the initial value
 A of one of the variables X.

 Similarly it can be seen that m equations of constraint (15) cause
 the appearance of m zero roots in (9) and of m arbitrary constants in
 the form of initial values of variables X.

 8 A (0) is the determinant obtained by putting X = 0 in the right-hand
 member of (9). ??

 9 The subscript o in equation (19) and (20) signifies that the values of ? to
 be taken are those corresponding to the origin xi = x2 = . . . = xn = 0 bt
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 In such case, then, the equilibrium or steady state is no longer
 fixed by (1) as soon as the values of the parameters Pi, P2,. . .Pj are
 given, but the equilibrium further requires, for its definition, the
 statement of the initial values Ah Ai,...Am of the variables Xh

 X2,... Xm. That is to say, the equations of equilibrium (3) take the
 form

 Pi \Ai, A2,.. .Am; Xm+i-. .Xn)
 F2 (A\, A2,.. .Am; Xm+i.. .Xn) [ /oi\

 ? Fn \Ai, A2,.. .Am; Xm+i.. .Xn) ? 0

 the Xi, X2,... Xm having been eliminated by virtue of the equations
 of constraint (15), with introduction, in their place, of the initial
 constants Ai, A2,.. . Am. Equilibrium is now free to be influenced by
 the arbitrary selection of the initial values of m of the masses X of the
 components of the system. This is the case of common interest jn
 physico-chemical transformations.

 It has been shown that, in the case where equations of constraint
 exist between the variables X, the polynomical A (X) contains the
 factor X, the determinant A (0) vanishing. In fact, it is evident that
 the differential equation of nth order in x which can be derived in
 well-known manner 10 from the system (7), after rejection of all
 terms of higher degree than the first, is reducible to an order as much
 lower than n as there are zero roots for the equation A (X) = 0.
 However, in practice, instead of operating in this manner upon the

 primitive system (1) or its equivalents (2) or (6), it is preferable to
 eliminate from the start m of the variables X by the aid of the
 equations of constraint (15). There then remain (n ? m) dependent
 variables, which may be either certain of the original variables X

 10 The elimination of (n ? 1) of the variables XiX2.. .xn in the system (7),
 discarding the terms of second and higher degree, can be effected at sight ac
 cording to the plan

 that is to say  A(a)*-?
 an

 ?21,

 GLni,

 dt' ?12,

 a*-Jt>

 ar?2,

 .ai?

 .?2n

 , . .ann

 Xi = 0
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 themselves, or certain other variables which it may be convenient to
 introduce in their stead, and which serve equally to define the state
 of the system.

 Let Y\, Y2}. . . Y? be such variables given that

 v = n ? m (22)
 In place of the primitive system (2) we shall then have a system

 <^ = *1(YhYi,...Yv; AhA2,....Am) at

 ?=*2(Fb Yt,...Yv; AhA?,..Am) at

 ^ = *,(r1; r2,...y?; AuAt,...Am) at

 (23)

 the Ai, A2,... Am, initial values of Xh X2,. . . Xm, functioning as para
 meters independent of the time t.

 The system (23) yields to a treatment identical with that applied
 to the system (2) above, and gives under corresponding conditions a
 general solution of the form (8) containing (n ? m) exponential and
 (n ? m) arbitrary multiplicative coefficients, as required by the
 conditions of the problem.

 Convergence of the Series (8) and Starility n of the System
 at the Origin of the Variarles x.

 To simplify the discussion let us write

 Xy = ?JLj + ivj (24)

 If ?if is zero, \j is a pure imaginary.
 We need not discuss the case in which the equation A (X) = 0 has

 zero roots, since these can be eliminated by a change of variables by
 virtue of the equations of constraint.

 There remain to be discussed the following cases:

 11 A detailed discussion of the question of the existence of series solution
 of equations of the type (1) will be found in Poincar?'s memoir " Sur les
 Courbes D?finies par les Equations Diff?rentielles," Jl. math?m. 1886, Ser. 4,
 v. 2, chapter XVII. See also Encycl. des Sciences Math. t. II, v. 3, fase. 1.
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 1. If all the /x's are negative, the series (8) evidently converge for
 large values of t, and the x's then approach zero as t approaches
 infinity. In this case, then, the point xx = x2 = ? xn = 0 corre
 sponds to a stable condition.

 2. If, on the other hand, all the /x's are positive, then the series (8)
 converge for large values of ? t, and diverge for large values of t. The
 origin of the x's in this case corresponds to an unstable condition.

 3. If some of the /x's are positive, others negative, the series (8)
 evidently in general converge neither for large values of t nor for large
 values of ? t.

 However, in this case we can single out a particular solution

 xi = aieu+aiie2U+ ... (25)
 in which ?j, > 0; from which it is evident that the state of the system
 at the origin of the x's is certainly unstable at any rate for certain
 displacements. Equilibrium at the origin is therefore in this case
 unstable.

 4. If some of the roots X are pure imaginaries, the presence of even
 a single positive /x will determine the instability of the equilibrium of
 the origin. If, on the other hand, those /x's which are not zero, are all
 negative, then the series may converge for large values of t, and in
 that case the equilibrium, at the origin of the x's, would be in a certain
 sense stable; for, after an arbitrary displacement, though the system
 would not in general return to the origin, it would ultimately travel
 in a periodic path not containing the origin.12 That is to say, after
 the lapse of a certain time the point representing the state of the
 system would thenceforth never be further away from the origin than
 a certain finite maximum distance M.

 The criterion for the existence of purely imaginary roots is evidently
 that A (X) and A (? X) have one or more common factors of the form
 (X2 + p2), where p is a real quantity.

 5. If all the X's are pure imaginaries,13 (in which case A (X) contains.

 12 To be more exact, the point Xi, x2. . .xn in n ? dimensional space, which
 represents the state of the system, describes such a path.

 13 The existence of purely imaginary roots A may perhaps seem of theoretical
 rather than practical interest, since they could occur only when the coeffi
 cients in (7) satisfy very particular conditions, and since it appears improbable
 that these conditions would be satisfied in nature.

 However, the case, in no way improbable a priori, that the real part p of
 Xbe very small, in practice will differ but little from the case where ?x = 0.
 For, if p is sufficiently small, any accidental disturbance of the system ( e. g.
 any accidental change in one of the parameters P) from equilibrium, will set
 up oscillations with only slight damping, so that the system will be liable to be
 kept in more or less constant oscillations.
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 only even powers of X, with all coefficients of the same sign), then the
 series (8) may converge for all values of t. In that case the process

 would be periodic ab initio, and the equilibrium at the origin would be
 stable in the same sense as in case (4) above.

 To recapitulate, we may enunciate two propositions, of which one
 is the converse of the other :

 Given that the series (8) are convergent,
 1. If none of the real parts /x of the roots X of the equation A (X) = 0

 is positive, the system is in stable equilibrium at the origin of the x's.
 This stability is absolute if none of the /x's are zero.
 It is relative, of the type (4) or (5), if A (X) = 0 has one or more

 roots in which /x = 0.
 2. If the system is stable (absolutely or relatively) at the origin

 of the x's, then the equation A (X) = 0 can not have a root X such
 that /x > 0.

 Special Cases.

 1. Only one dependent variable.
 If n ? m = 1, i. e., if the number of equations of constraint is only

 one less than the total number of primitive dependent variables X,
 then the state of the system at any instant is completely defined by
 statement of the value of one single variable Y, given the values of
 the initial constants A\, A2,.. .and of the parameters Pi, P2,... The
 transformation can in this case be regarded as one single reaction.

 The commonest example of this kind is that of one simple chemical
 reaction, reversible or not, unaccompanied by any simultaneous
 reaction of any kind (such as side reactions, consecutive reactions,
 etc.). For the variable Y we may then employ the mass (or con
 centration) of an arbitrarily selected component, or any convenient
 multiple thereof.14

 In this case, if we omit from the functional parenthesis the para
 meters Ai, A2,..., the system of equations (19) reduces to a single
 equation.

 14 In chemical dynamics it is customary to employ for the variable F in a
 single reaction the change in concentration, from the origin of time to the
 instant t, of one or more, chosen arbitrarily, of the components. The relation
 between the X's, the A's and the Y's, at constant volume, is then Y = A - X.

 A somewhat different convention is followed by J?ttner loc. cit. See also
 Mellor, Chemical Statics and Dynamics, 1904, pp. 85, 86; 91, 92.
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 ?=TO (26)
 or, shifting the origin after the manner of (5), (6),

 dy . * m (27)
 and hence, by the same procedure as in the case of (7)

 ^=ay + bf+... (28) at

 The solution (8) in this case takes the form

 . y = ai e* + an e2^ + am e*u + ... (29)
 where

 X = ? (30)

 =1 (31) dy
 Now if the equilibrium at y = 0 is stable, it is evident that we must

 have

 ^<0
 dy l (32) ? <0

 X <0
 Hence we conclude that

 1. The series (29) converges for large values of t.
 2. The variable y ultimately approaches zero asymptotically,

 since the coefficient ?, from the nature of things, can not be complex.
 A proof of this asymptotic approach to equilibrium has been given

 by J?ttner, for the case of a single-chemical reaction following the law
 of mass action. The proof given above is independent of the law of
 mass action and applies to all cases satisfying only the broad condition
 that the equilibrium corresponding to y = 0 is stable.

 Special Cases (continued).

 2. If n ? m > 1 the transformation can not be regarded as one
 single reaction. The state of the system at any instant, for given
 values of the parameters P and A requires for its definition (n ? m)
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 = v variables Yh Y2,.. . Yv. The process can in this case be regarded
 as the resultant of (n ? m) single transformations proceeding simul
 taneously, and the state of the system, and in particular the velocities

 ?, are fully defined when we are given the values of the parameters at

 P; the initial values Ah A2,.. .Am of the variables X (masses of the
 several components) ; and the values of the variables Y\> Y2,... Yv
 which tell us how far each reaction has proceeded.

 Consecutive Transformations.

 A special case arises if the (n ? m) "single" transformations whose
 resultant is the actual transformation can be so arranged in order,
 that the velocity of the first depends solely on Yif that of the second
 on both Ti and Y2, in general that of the jth on Fi Y2. . . Yj. This is
 the case of what might be termed purely consecutive reactions.
 The system of equations (7) in this case takes the form :

 dVl=aiiyi+... dt
 dy2 . ,
 -f- = ?21 yi + ?22 2/2 + - dt

 -j^ = aPi yi + av2 y2 + . . . + avv yv+ . . dt

 The solution of (33) is here also given by (8) ; however, it takes on
 a simplified form owing to certain special properties of the exponential
 constants X and the coefficients a, as follows :

 (33)

 A. Exponential Constants.

 1. It will be seen that in (33), as compared with (7), every coeffi
 cient ars for which s > r is zero. In consequence of this A (X) reduces
 to the dexter diagonal, and hence

 Xt = an

 2. Inasmuch as the coefficients ? are essentially real, it follows
 that the X's also are all real. If therefore equilibrium is established,
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 the approach to it must be ultimately asymptotic, the presence of
 trigonometric terms in (8) being excluded by the reality of all the X's.

 Indeed, the purely successive character of the reactions, as defined
 above, excludes* reversible reactions, so that the final mass of certain
 of the components, when in equilibrium, is zero. Oscillations beyond
 the equilibrium point are therefore excluded by the physical nature
 of the variables X (masses), which do not admit of negative values.

 3. We have seen that the system will be stable at the origin of
 the y's, and at the same time the series (8) will converge, provided
 that all the /x's are negative, i. e. in the present case, provided that

 mau <0 (i = 1,2,...v) (34)

 that is to say, provided that each individual transformation taken by
 itself tends towards a stable equilibrium (see discussion of equation
 32).

 B. Multiplicative Constants.

 1. The system (33) has the following peculiarity: We may break
 off at any one of the equations, say the jth, and leave a self-complete
 system.

 From this it is easily seen that the series (8) for y? must in this
 case break off at the terms in X, = a,-,- or its multiples, and can not,
 for example contain any terms in X (J+i). The coefficients of these
 further terms must therefore be zero. This also follows directly by
 (12).

 2. Let ? Xm = ? amm be the least of the ? X's, all the X's being
 negative. Or, in other words, let | X?? | = I amm | be the least of the | X |.

 Then it is evident that for sufficiently large values of t all other terms
 may be neglected in comparison with those in Xm and of the first
 degree. In its last phases the process is therefore represented by

 2/i = 0 1
 2/2 = 0

 y m ? we ""
 2/m+i = Ciex>

 Vv = CveXmt )
 so that in the last phases

 2/1 ' 2/2 : ... :ym-i'-ym:ym+i: ... :y,::0 :0: .'. . :0 : C0 : Cy.... \CV (37)
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 That is to say, the quantities y are in constant ratio. Furthermore,
 if y m relates to the substance or substances Sm having the least |X|,
 all the substances parent to Sm are entirely absent in the last stages
 of the transformation.

 We recognize here a well-known property of radioactive equilibria,
 in which the longest-lived substance (e. g. uranium) heads the series,

 while the other substances are present in constant ratio. However,
 from the method by which this conclusion has here been reached, it is
 evident that this property is independent of the particular form of
 radioactive transformations, but rests on a broader basis and is com
 mon to all systems in which is taking place a series of purely suc
 cessive transformations according to any law whatever.

 Special Cases. (Continued)

 Consecutive Reversible 15 Reactions.

 It may be noted in passing that the conclusions of the last section
 above are still applicable to a broad class of cases of consecutive
 reactions, including reversible reactions, provided that at least one
 among them is irreversible. It will suffice here to point out, by the
 way of example, one such case, that of five consecutive reactions,
 of which the second and third only are reversible. It is understood
 that the reactions considered are otherwise purely consecutive, so
 that the second, for instance, is wholly independent of the progress
 of the fourth and fifth.

 The determinant A (X) in this case takes the form :

 A(X) =

 ?u - X 0 0
 ?21 ?22 ? X ?23
 ?31 ?32 ?33
 ?41 ?42 ?43
 ?51 ?52 ?53

 0 0
 0 0

 X ?34 0
 ?44 ? X 0
 ?54 ?55 ? X

 In this case also it will be found that A (X) reduces to its dexter
 diagonal, all the roots for X being in consequence necessarily real.
 The approach to equilibrium is therefore in this case also asymptotic,

 15 The word "reversible'' is here of course not understood in its thermo
 dynamical sense.
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 and the proportion of the y's is, during the last stages of the process,
 constant. This last conclusion applies, in fact to all cases in which all
 the roots X are real and negative.

 General Case.

 We have considered certain special cases in which A (X) reduces to
 its dexter diagonal, so that all the roots X are real. In general some
 or all of these roots may be complex, so that in general a more or less
 complicated series of reactions may give rise to oscillatory pheno
 mena.16

 In conclusion it may be remarked that the treatment set forth above
 presents an evident analogy to the theory of small oscillations accord
 ing to Lagrange. However, in the case of the oscillations of a mechan
 ical system if the number of coordinates is n, the general solution
 contains 2n arbitrary multiplicative constants; whereas in the case
 here studied the number of such constants is equal to the number of
 variables, namely n.

 This point of difference is not without physical significance:
 The multiplicative constants are determined by initial conditions.

 In the case of an oscillating mechanical system it is necessary, in order
 completely to determine the motion of the system, to know the
 n initial values of the n coordinates Xh X2,.. .Xn, and further, the n
 . ... t . p., , ... dXi dX2 dXn initial values 01 the velocities ?-? -?... ?-?.

 dt dt dt
 On the other hand, in the case of transformations of the type here

 considered, not only is it sufficient to know the initial values of Xh
 X2,.. . Xn, but, when these are given there remains no further freedom

 of choice for the initial values of the velocities ?. We have here a dt
 characteristic property of inertia-free or completely damped systems,
 in which velocities are completely determined when the values of the
 generalized coordinates are given, and in which the accelerations
 vanish with the velocities.17

 16 See Lotka, Zeitschrift f. phys. Chem., 1910, v. 72, p. 508; 1912, v. 80,
 p. 159; Hirniak ibid. 1910, v. 75, p. 675.

 17 By differentiating (7) we obtain
 d2Xi dxi dx2 .

 Hence it is evident, provided none of the coefficients a are infinite, that the
 dx

 second and all higher derivatives of x\ x2...xn vanish with the velocities ?.
 Compare Buckingham, Thermodynamics, 1900, p. 33. d*
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 Furthermore, in the absence of inertia, the velocities being never
 theless finite, these must be held in check by dissipative resistances.
 The transformations which we have been considering are accordingly
 typical irreversible 18 processes, and the history of the system under
 going such transformation is a typical example of evolution. It is,
 indeed, with a view to preparing the ground for a general investiga
 tion of the dynamics of evolution, that the reflections here set forth
 were conceived along broad and comprehensive lines. Attention
 may be drawn to the fact that, while we have spoken of the variables
 X as the masses of the components of a system in chemical reaction,
 there is nothing in the method followed to restrict us to such interpre
 tation. The X's may be masses of any species of material complexes
 in any mutual relation of interpendence. For example, they may be
 the masses of biological species dependent on each other for food and
 in other ways. The equations developed by Sir Ronald Ross 19 rela
 tive to the interpendence of the malaria parasite, the anopheles

 mosquito and man, fall within the type here considered, and their
 solution is comprehended in the general solution given above.

 Summary

 The differential equations relating to a physical system undergoing
 change of state are of the general form

 ?? = Fi(Xi, X2,.. .Xn', Pu P2,.. .Pj) at
 dX2
 HT  F2(Xi, X2,. . . Xn', Pi, P2,... Pj)

 = FniXi, X2,. . .Xn', Pi, Pi, . . . -Pj)

 (1)

 dt

 where Xh X2,. .. Xn are the masses of the components of the system
 and the quantities P measure certain parameters defining the state
 of the system (e. g. pressure, temperature).

 The functions F commonly considered in discussions of this subject
 are those defined by the law of mass action. Some other special cases

 18 In the thermodynamical sense.
 19 Nature, Oct. 5, 1911, p. 466; A. J. Lotka, ibid. Feb. 8, 1912, p. 497.
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 have also been considered. The most general discussion of the sub
 ject is that given by J?ttner, but is restricted to a broad treatment of
 a somewhat general form of the law of mass action.

 In the present paper a very general treatment of the kinetics of
 material transformations is developed on the sole assumption that the
 functions F are analytic in the neighborhood of the equilibrium values
 of the variables X.

 A general solution is given of the system of differential equations
 (1) for the case that the parameters P are held constant during the
 transformation. This solution is oscillatory or aperiodic according
 to the nature (complex or real) of the roots X of a certain determinantal
 equation A (X) = 0

 The effect of equations of constraint is discussed.
 Convergence of the series solution is shown to be related to the

 stability of the system at the equilibrium point.
 Several special cases are considered.
 1. Single transformation.
 2. Consecutive transformations. It is well known that in chains

 of consecutive radio-active transformations the products are present
 in constant ratio. This property is now shown to be quite general
 for the terminal stages of any series of purely consecutive reactions
 taking place according to any law whatever, provided only that the
 functions F are analytic as previously assumed.

 3. A similar conclusion applies to all systems in which the process
 of transformation is aperiodic.

 4. In general, in a complicated system, the process is oscillatory.
 The entire development set forth presents an analogy to the theory

 of small oscillations according to Lagrange. However, instead of 2n
 arbitrary constants, corresponding to n co-ordinates, as in Lagrange's
 theory, we have here only n such constants. This fact stands in close
 relation to the circumstance that the systems here considered are
 essentially "inertia-free" or "completely damped," and the trans
 formations accordingly are typically irreversible processes, typical
 cases of evolution (see for example Chwolson, Textbooks of Physics,
 German Edition 1905, v. 3, p. 499; J. Perrin, Trait? de Chimie Phy
 sique, 1903, Chapter V). It is on this account, with a view to pre
 paring for the treatment of the general problem of evolution that the
 reflections here set forth were conceived along broad and compre
 hensive lines,
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