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Communicated by R. Pearl, May 20, 1920

Periodic phenomena play an important r6le in nature, both organic and
inorganic.

In chemical reactions rhythmic effects have been observed experi-
mentally, and have also been shown, by the writer' and others,2 to follow,
under certain conditions, from the laws of chemical dynamics.

However, in the cases hitherto considered on the basis of chemical
dynamics, the oscillations were found to be of the damped kind, and
therefore, only transitory (unlike certain experimentally observed periodic
reactions). Furthermore, in a much more general investigation by the
writer, covering the kinetics not only of chemical but also of biological
systems, it appeared, from the nature of the solution obtained, improbable3
that undamped, permanent oscillations would arise in the absence of
geometrical, structural causes, in the very comprehensive class of systems
considered. For it seemed that the occurrence of such permanent oscilla-
tions, the occurrence of purely imaginary exponents in the exponential
series solution presented, would demand peculiar and very specific rela-
tions between the characteristic constants of the systems undergoing
transformation; whereas in nature these constants would, presumably,
stand in random relation.

It was, therefore, with considerable surprise that the writer, on apply-
ing his method to certain special cases, found these to lead to undamped,
and hence indefinitely continued, oscillations.
As the matter presents several features of interest, and illustrates

certain methods and principles, it appears worth while to set forth the
argument and conclusions here.
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Starting out first from a broad basis, we may consider a system in the
process of evolution, such a system comprising a variety of species of
matter Si, S2.... 5,, of mass Xi, X2.... X.. The species of matter S
may be defined in any suitable way. Some of them may, for example, be
biological species of organism, dthers may -be components of the "in-
organic environment." Or, the species of matter S may be several com-
ponents of an inorganic system in the course of chemical transformation.
We may think of the state of the system at an instant of time as being

defined by statement of the values of X1, X2.... X.; of certain para-
meters Q defining the character of each species (in general, variable with
time); and of certain other parameters P. The parameters P will, in
general, define the geometrical constraints of the system, both at the
boundaries (volume, area, extension in space), and also in its interior
(structure, topography, geography); they will further define such factors
as temperature and climatic conditions.
For a very broad class of cases, including those commonly treated in

chemical dynamics, but extending far beyond the scope of that branch of
science, the course of events in such a system will be represented by a
system of differential equations of the form

-s F(Xi, X2.... X.X; P, Q 1
dt (i=1, 2....n)

If we restrict ourselves to the consideration of evolution at constant
P's and Q's we may write briefly

d-t _ F,(X,, X2... X,)- (2)

The writer has elsewhere4 given a somewhat detailed discussion of the
general case, in which no special assumption is made regarding the form
of the functions F, that is to say, regarding the mode of physical inter-
dependence of the several species and their environment.
We now proceed to consider a simple special case, as follows:
The system comprises
1. A species of organism Si, a plant species, say, deriving its nourish-

ment from a source presented in such large excess that the mass of the
source may be considered constant during the period of time with which
we are concerned.

2. A species S2, for example a herbivorous animal species, feeding on Si.
In this case we have the following obvious relations

Other dead
Rate of in- Mass of SI or excretory
crease of X, Mass of newly destroyed by matter elimi-
per unit of unit of timep S2 per unit of nated from Si
time time per unit of

time
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Mass of newly
Rate of in- formed Sa per Mass of S2
crease of X2 - unit of time destroyed or (4)
per unit of (derived from eliminatedper
time S1 as food in- tdnit of time

(gested)
Or, in analytical symbols,

-dX A'1Xi-BlXlX2-A ",Xi (5)

- (A'1-A ",)Xi-BB1XX2 (6)
- A XI -BiXX2 (7)
- X1(Ai-B1X2) (8)

dX2 -
A2XiX2-B2X2 (9)

- X2(A2X,-B2) (10)
The coefficients Al, A2, B1, B2 are in general functions of Xl and X2.
The reasons for selecting the form (5), (9) for the analytical formula-

tion of (3), (4) require perhaps a little explanation. For small changes
the rate of formation of new material of a given species of organism under
given conditions is proportional to the existing mass of that species. In
other words, the growth of living matter is a typically autocatakinetic5
process. This term has, therefore, been put in the form A' X1 for the
species Si. Proportionality does not hold for large changes of X1, X2,
and this is duly provided for in that A ', is a function of X1, X2.

Similarly the mass of matter rejected per unit of time from the species
S1 is proportional to X1, and has been put in the form A "1Xl, where A"
is in general a function of X1, X2.

Again, the mass of S1 destroyed by S2 feeding upon it will, for small
changes, be proportional to X2 and also to X1. This term has, therefore,
been set down in the form BiXiX2. Here again the departures from pro-
portionality are taken care of by the variations of B1 with X1 and X2, of
which variables B1 is a function.

Similar remarks apply to the formulation (9) of (4). If there were no
waste in the feeding process, and assuming that S2 consumes no other
substance than S1, we would have B1 = A2; but in the more general case
B1 i A2. Approaching now the analytical treatment of equations (5),
(9), or their equivalents (8), (10), we note first of all that there are two
ways of satisfying the condition for equilibrium, namely:

X1= X2 = 0 (11)
and

-XI =A; X2 =A- (12)
22 = 1
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We shall return later to the condition (11).
Condition (12) we will employ to define a new. origin. Accordingly we

introduce into (8), (10) the variables:

xI = X1_B2 (13)

x2 = X2 (14)

and obtain
dx1

= al2x2 + a(52X1X2dt (15)
dx2dtj a2lxl + a2l2x1x2

where
a12 = BiB2 (16)

A2
al2 =-B1 (17)

A1A2 (18)
a21 = B1 18

a212 = A2 (19)

Note the significant fact that in (15) the linear terms in the dexter
diagonal are lacking. It is this circumstance which imparts an oscillatory
-character to the process.

For, since al2 and a21 are in general functions of xi, x2, let us expand
them by Taylor's theorem and put

al2 = Po + Plxl + p2x2+ (20)
a2l = qo + qlxl + q2x2 + .... (21)

A general solution of the system of differential equations (15) is then

x= PieXlt + P2eX2t + Plle2Xit + P22e2X2t + (23)
X2 = QleXit + Q2eX2I + Qlle2X1I + Q22e2X2t + (24)

where Xl, X2, are the roots of the determinental equation for X

-X PO l=0 (25)
that is to say,

X = -p q (26)
Now, according to (20), (21) po, qo are the equilibrium values of a12,

a2l. Hence, if we denote by A1, B2 the equilibrium values of A1, B2, i.e.,
those values which correspond to xi = X2 = 0, then we have, by (16),
(18)

poqo = -A1B2 (27)
and hence
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Now the coefficient B2 is, in the nature of things, a positive number, as.
follows from its definition by (4), (9).
As regards the coefficient A1, we have two possible alternatives.
If A1 is negative for all values of X1, X2, then X, as defined by (28),.

would be real; but this inference is nugatory. For B1, like B2 is, by-
definition (3), (5), an essentially positive quantity, and hence the equilib-
rium defined by (12) would in this case occur at a negative value of X2.
But this is physically impossible, since X2 is a mass.
By referring to (5), (7) it will be seen that this case, in which A1 is.

negative for all values of X1, X2, and in which an equilibrium of the type
defined by (12) is physically impossible, corresponds to a species Si in-
capable of maintaining itself even in the absence of the tax placed uponi
it by the species S2 feeding upon it. This is a case of minor interest.

If, on the contrary (12) can be satisfied by a positive value of A1, so-
that an equilibrium of the type (12) is physically possible, then, evidently,.
by (28), X is a pure imaginary. The solution (23), (24) then takes the
form of Fourier's series; the process is an undamped oscillation con-
tinuing indefinitely.

In this connection, it is interesting to recall a passage in Spencer's-
"First Principles," chapter 22, paragraph 173:
"Every species of plant and animal is perpetually undergoing a rhyth-

mical variation in number-now from abundance of food and absence of
enemies rising above its average, and then by consequent scarcity of
food and abundance of enemies being depressed below its average......
......amid these oscillatios- produced by their conflict, lies that average

number of the species at which its expansive tendency is in equilibrium
with surrounding repressive tendencies. Nor can it be questioned that
this balancing of the preservative and destructive forces which we see
going on in every race must necessarily go on. Since increase of numbers-
cannot but continue until increase of mortality stops it, and decrease
of numbers cannot but continue until it is either arrested by fertility or-
extinguishes the race entirely."
A question now arises. Do the curves representing the solution (23), (24)'

dip below the zero axes of Xi, X2? This would mean that one or the other,.
or both, of the species S, S2 would become extinct through the violence
of the oscillations.
To answer this question we consider the relation:

dX2 X2(A2X,-B2) (29)
dXi X1(Ai-BjX2) (9

which is obtained from (8) and (10) by division. From the periodicity
of xi, x2 (and, therefore, X1, X2) it follows that the curve defined in rectan-
gular coordinates X1, X2 by (29) is a closed curve. Furthermore, this
curve can never cross the XI axis, for at all points of this axis the first,,
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and all the higher derivatives of X2 with regard to X1 vanish, as can be
seen from (29) directly and by successive differentiations.

Similarly it can be seen that the curve defined by (29) can never cross
the X2 axis.

Hence, if any point on any integral curve of (29) lies within the positive
quadrant, the whole of that curve lies in that quadrant. Thus the
oscillations can never exceed the limits of positive values X1, X2.
We conclude, therefore, that under the conditions of the problem as

here set forth, neither the species SI nor the species S2 can become extinct
through severity of the oscillations alone. In practice the eventuality
might arise, however, that in the course of these oscillations one or the
other species might be so thinned out as to succumb to any extraneous
influence that might arise such as has not been taken into account in our
present considerations.
We return now briefly to the consideration of the equilibrium defined

by the equation
X1 = X2=° (11=

Applying here the criterion set forth by the author elsewhere,6 it is seen
that when A1 is positive the determinental equation for X has at this point
two real roots of opposite sign, which is characteristic of unstable equilib-
rium. If, on the other hand, A1 is negative in the neighborhood of the
origin of X1, X2, then the equilibrium here is found to be stable, the two
roots for X being both negative.

In conclusion it may be remarked that a system of equations identical
in form with (8), (10) is obtained in the discussion of certain consecutive
autocatalytic chemical reactions. Here, however, the coefficients A, B
are constants and the integration can be reduced to a quadrature. Aside
from a certain number of periodic reactions which have been observed
more or less as laboratory curiosities, a certain interest is also attached
to this matter from the fact that rhythmical reactions (e.g., heartbeat,
which may continue after excision), play an important r8le in physiology.
We cannot, of course, say whether in such case geometrical (structural)
features are the dominating factors.
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